

Solar Photovoltaic Glint and Glare Study

AECOM

Sunnica Energy Farm

7th September, 2020

PLANNING SOLUTIONS FOR:

- Solar
- Telecoms
- Railways
- DefenceBuildings
- Wind
- Airports
- Radar
- Mitigation

www.pagerpower.com

ADMINISTRATION PAGE

Job Reference:	9564C	
Date: 7 th September, 2020		
Author: Michael Sutton		
Telephone:	01787 319001	
Email:	michael@pagerpower.com	

Reviewed By:	Kai Frolic
Date: 7 th September, 2020	
Telephone:	01787 319001
Email:	kai@pagerpower.com

Issue	Date	Detail of Changes	
1	31 st December, 2019	Initial issue – (9564A)	
2	10 th July, 2020	Second issue – Consideration of proposed planting around and the addition of new layout (no modelling)	
3	26 th August, 2020	Third issue – Updated analysis of bridleways and two additional dwelling locations along with administrative revisions	
4	7 th September, 2020	Fourth issue – Further administrative revisions and addition of baseline condition impacts (9654C)	

Confidential: The contents of this document may not be disclosed to others without permission.

Copyright © 2020 Pager Power Limited

Stour Valley Business Centre, Brundon Lane, Sudbury, CO10 7GB

T:+44 (0)1787 319001 E:info@pagerpower.com W: https://www.pagerpower.com

EXECUTIVE SUMMARY

Report Purpose

Pager Power has been retained to assess the possible effects of glint and glare from a proposed solar photovoltaic (PV) development known as Sunnica Energy Farm, located on the border of Cambridgeshire and Suffolk in the UK.

The assessment relates to the possible impact upon surrounding road users, railway operations, dwellings, public right of ways, as well as aviation activity associated with RAF Mildenhall, RAF Lakenheath, and Cambridge Airport.

Layout Update

The modelling presented within this report is based on a previous larger layout, with the current redline being wholly within the redline previously modelled. The overall results therefore remain entirely valid because any impacts will be less than or equal to the modelled scenario which therefore represents a conservative approach to assessment.

Overall Conclusions

No impacts are possible for RAF Mildenhall as no solar reflections are predicted towards any of the scoped and assessed aviation receptors. No detailed modelling is recommended for RAF Lakenheath or Cambridge Airport as no significant impacts are anticipated at their respective distances and locations. This is based on past assessment experience.

Under baseline conditions, significant impacts are predicted towards a small section of the A14. Temporary screening in the form of solid hoarding along the site boundary is however presented in Chapter 16.3.31 of the Preliminary Environmental Information Report (PEIR), which will sufficiently mitigate the identified significant impacts. No significant impacts have been identified for the remaining assessed ground-based receptors, and no further temporary mitigation requirement has been identified.

Once the proposed screening has established, all railway and road receptors, as well as most dwelling, public right of way, and bridleway receptors, will be significantly screened by existing vegetation, proposed vegetation, and/or surrounding buildings. The impact upon the remaining dwelling, public right of way, and bridleway receptors that do have potential views of the panels has been assessed and considered 'low' in the worst-case. No significant impacts are therefore predicted towards the assessed ground-based receptors, and no further mitigation requirement has been identified.

The assessment results are presented in the following sections.

Overall Assessment Results

- Solar reflections are not geometrically possible towards the ATC Tower or approach paths for Runway 11/29 at RAF Mildenhall due to the relative location of the Sun path, reflectors, and receptors across the year. No impacts are therefore possible, and no further mitigation is required.
- No detailed assessment is recommended for RAF Lakenheath or Cambridge Airport due to the distance from the development and orientation of the runways. It can be safely determined that, based on the assessment criteria, if solar reflections are possible, intensities would have a 'low potential for temporary after image' and would therefore be acceptably low in accordance with FAA guidance.
- Solar reflections are geometrically possible towards 89 out of the 103 assessed train driver receptors along the assessed section of railway line. Solar reflections will however not be experienced in practice due to significant screening in the form of existing vegetation, proposed vegetation, and/or surrounding buildings, which will significantly obstruct the views of the reflecting panels. No impacts are predicted upon train drivers and no further mitigation is therefore required.
- Although solar reflections are geometrically possible towards 189 out of the 257 scoped and assessed road receptors, no effects are predicted in practice due to the screening in the form of existing vegetation, proposed vegetation, and/or surrounding buildings, which will significantly obstruct views of the reflecting panels. No impacts upon surrounding road users is therefore predicted and no further mitigation is required.
- Screening in the form of existing and proposed vegetation will significantly obstruct the visibility of the reflecting panels for the vast majority of observers along the surrounding public right of ways and bridleways. The potential impact in the context of annoyance on the remaining pedestrians and riders who have views of the panels has been assessed as 'low' and no further mitigation is therefore required.
- Although solar reflections are geometrically possible for 116 out of the 222 scoped and assessed dwelling receptors, no impacts are predicted in practice and therefore no further mitigation is required. This is because for most of these dwellings, an observer will not experience solar reflections in practice as views of the panels will be significantly screened by existing vegetation, proposed vegetation, and/or other surrounding dwellings. The remaining dwellings are located over 1km from the reflecting panels and so, although reflections are predicted, they are considered no impact in accordance with the assessment methodology presented in Section 3.
- Solar reflections are geometrically possible towards the Snailwell Gallops and British Racing School. Screening in the form of existing and/or proposed vegetation will however completely block views of the solar panels to both horse facilities and as a result no impacts are predicted, and no further mitigation is required.

Baseline Condition Assessment Results

- Effects are predicted towards train drivers along approximately 200 metres of railway line; however, a train driver is not expected to have a greater workload than normal and will only be in the reflection zone for approximately 8 seconds¹. Solar reflections will also coincide with direct sunlight, which is a far more intense source of light. No significant impacts are predicted towards the train drivers under baseline conditions, and no temporary mitigation is therefore required.
- Solar reflections are predicted towards sections of the B1085, A11, and A1304 however significant impacts are not predicted due to a number of mitigating factors including the classification of the road, the location of the solar reflection relative to the road user's main field of view, and the existing sunlight effects.
- Significant impacts are predicted under baseline conditions towards a small section of the A14 due to the national classification of the road and the solar reflections originating from inside the road user's main field of view. Temporary mitigation is therefore required along the site boundary to remove views of the reflecting panels.
- Based on the baseline conditions, views of the panels are possible for a minority of observers located in the surrounding dwellings, pedestrians on the public right of ways, and horse and riders on the bridleways. However, reflections towards these observers do not have an associated safety hazard the worst-case scenario would be discomfort when looking towards a reflecting panel and a potential temporary after-image. No significant impacts are predicted towards the surrounding dwellings, public rights of ways, and bridleways under baseline conditions, and no temporary mitigation is therefore required.
- Solar reflections predicted towards the horse facilities are significantly screened by existing vegetation forming the baseline conditions. No impacts are predicted towards the horse facilities and no temporary mitigation is therefore required.

¹ Based on a speed of 60mph.

LIST OF CONTENTS

Admin	istrati	on Page	2
Execut	tive Sı	ummary	3
	Repo	rt Purpose	3
	Layou	ut Update	3
	Overa	all Conclusions	3
	Overa	all Assessment Results	4
	Basel	ine Condition Assessment Results	5
List of	Conte	ents	6
List of	Figur	es	10
List of	Table	S	11
About	Pager	r Power	12
	Comp	pany Overview	.12
	Pager	r Power's Experience	. 12
1	Intro	duction	13
	1.1	Overview	. 13
	1.2	Glint and Glare Definition	.13
2	Solar	Development Location and Details	14
	2.1	Layout Update	. 14
	2.2	Development Location	. 14
	2.3	Bifacial Panels	. 16
3	Glint	and Glare Assessment Methodology	17
	3.1	Guidance and Studies	.17
	3.2	Background	. 17
	3.3	Pager Power's Methodology	. 17
	3.4	Assessment Methodology and Limitations	. 18
4	Aviat	tion Receptors	19
	4.1	Aviation Receptors - Overview	.19

	4.2	Air Traffic Control Tower	19
	4.3	Approaching Aircraft	20
	4.4	Qualitative Aviation Assessment	20
5	Grou	Ind-Based Receptors	22
	5.1	Ground-Based Receptors – Overview	22
	5.2	Railway Receptors	22
	5.3	Road Receptors	24
	5.4	Public Right of Way and Bridleway Receptors	25
	5.5	Dwelling Receptors	27
	5.6	Horse Facility Receptors	29
6	Asse	ssed Reflector Areas	31
	6.1	Overview	31
	6.2	Reflector Areas	31
7	Glint	and Glare Assessment – Technical Results	32
	7.1	Overview	32
	7.2	Geometric Calculation Results Overview - ATC Tower	32
	7.3	Geometric Calculation Results Overview – Runway 11 Approach	32
	7.4	Geometric Calculation Results Overview – Runway 29 Approach	33
	7.5	Geometric Calculation Results Overview - Train Driver Receptors	33
	7.6	Geometric Calculation Results Overview - Road Receptors	34
	7.7 Rece	Geometric Calculation Results Overview – Public Right of Way and Bridle	
	7.8	Geometric Calculation Results Overview – Dwelling Receptors	41
	7.9	Geometric Calculation Results Overview - Horse Facility Receptors	45
8	Geor	metric Assessment Results and Discussion	46
	8.1	Overview	46
	8.2	Baseline Conditions	46
	8.3	Proposed Screening	49
	8.4	ATC Tower	49
	8.5	Runway 11/29 Approaches	49
	8.6	Railway Results	50

	07	Deed Decults	50
	8.7	Road Results	
	8.8	Public Right of Way and Bridleway Results	
	8.9	Dwelling Results	.57
	8.10	Horse Facility Results	.63
9	Over	all Conclusions	. 65
	9.1	Overall Assessment Results	.65
	9.2	Baseline Condition Assessment Results	.66
	9.3	Overall Conclusions	.66
Appen	dix A	– Overview of Glint and Glare Guidance	. 67
	Over	/iew	.67
	UK PI	anning Policy	.67
	Railw	ay Assessment Guidelines	68
	Asses	sment Process – Ground-Based Receptors	.71
Appen	dix B	- Overview of Glint and Glare Studies	.72
	Over	<i>i</i> ew	72
	Refle	tion Type from Solar Panels	72
	Solar	Reflection Studies	73
Appen	dix C	- Overview of Sun Movements and Relative Reflections	.76
Appen	dix D	– Glint and Glare Impact Significance	. 77
	Over	/iew	77
	Impac	t Significance Definition	77
	Asses	sment Process – ATC Tower	78
	Asses	sment Process – Approaching Aircraft	79
	Asses	sment process for Train Driver Receptors	80
	Asses	sment Process for Road Receptors	81
	Asses	sment Process for Dwelling Receptors	82
Appen	dix E ·	- Pager Power's Reflection Calculations Methodology	. 83
Appen	dix F ·	- Assessment Limitations and Assumptions	. 85
		Power's Model	
Appen		- Aviation Receptor Details	
1 1			_

	ATC Receptor Details	
	The Approach Path for Aircraft Landing on Runway 11	
	The Approach Path for Aircraft Landing on Runway 29	
Appen	dix H – Ground Receptor Details	
	Terrain Height	
	Railway Receptor Data	
	Road Receptor Data - A14	
	Road Receptor Data – A142	
	Road Receptor Data – B1085	
	Road Receptor Data - A11	94
	Road Receptor Data - B1102	96
	Public Right of Way Receptor Data	
	Dwelling Receptor Data	
	Horse Facilities Data	
Appen	dix I – Solar Panel Model Details	
	Panel Boundary Data – Area A	
	Panel Boundary Data - Area B	
	Panel Boundary Data – Area C	
	Panel Boundary Data - Area D	
	Panel Boundary Data – Area E	
	Panel Boundary Data – Area F	
	Panel Boundary Data – Area G	
	Panel Boundary Data – Area H	
	Panel Boundary Data – Area I	
Appen	dix J – Detailled Modelling Results	
	Overview	
	Public Right of Way and Bridleway Receptors	

LIST OF FIGURES

Figure 1 Assessed solar panel areas	15
Figure 2 ATC Tower location – aerial image	19
Figure 3 RAF Lakenheath and Cambridge Airport locations	21
Figure 4 Assessed railway receptors	23
Figure 5 Assessed road receptors	25
Figure 6 Assessed public right of way and bridleway receptors	26
Figure 7 Assessed dwelling receptors	28
Figure 8 Additional dwelling receptors	29
Figure 9 Assessed horse facility receptors	30
Figure 10 Assessed reflector areas	31
Figure 11 Significantly screened railway receptors 4 to 46	50
Figure 12 Significantly screened railway receptors 61 to 103	51
Figure 13 Baseline condition railway reflection zone	52
Figure 14 Significant screened road receptors along the A14	53
Figure 15 Significant screened road receptors along the A142	53
Figure 16 Significant screened road receptors along the B1085	54
Figure 17 Significant screened road receptors along the A11 (Sunnica West)	54
Figure 18 Significant screened road receptors along the A11 (Sunnica East)	55
Figure 19 Significant screened road receptors along the A1304	55
Figure 20 Significant screened road receptors along the B1102	56
Figure 21 Snailwell dwellings	58
Figure 22 Chippenham dwellings	59
Figure 23 Kennett dwellings	59
Figure 24 Red Lodge dwellings	60
Figure 25 Badlingham Manor dwellings	60
Figure 26 Freckenham dwellings	61

Figure 27 Worlington dwellings	61
Figure 28 Isleham dwellings	
Figure 29 Additional dwellings	
Figure 30 Horse facilities	

LIST OF TABLES

Table 1 Panel information	. 15
Table 2 Geometric analysis results – ATC Tower	. 32
Table 3 Geometric analysis results – Runway 11 Approach	. 32
Table 4 Geometric analysis results – Runway 29 Approach	. 33
Table 5 Geometric analysis results – Train driver receptors	. 33
Table 6 Geometric analysis results – A14	. 34
Table 7 Geometric analysis results – A142	. 34
Table 8 Geometric analysis results – B1085	. 35
Table 9 Geometric analysis results – A11	. 35
Table 10 Geometric analysis results – A1304	. 36
Table 11 Geometric analysis results – B1102	36
Table 12 Geometric analysis results – Public right of way and bridleway receptors	.41
Table 13 Geometric analysis results – Dwelling receptors	.45
Table 14 Geometric analysis results – Horse facility receptors	.45

ABOUT PAGER POWER

Company Overview

Pager Power is a dedicated consultancy company based in Suffolk, UK. The company has undertaken projects in 48 countries within Europe, Africa, America, Asia and Australasia.

Pager Power was established in 1997. Initially the company focus was on modelling the impact of wind turbines on radar systems. Over the years, the company has expanded into numerous fields including:

- Renewable energy projects.
- Building developments.
- Aviation and telecommunication systems.

Pager Power prides itself on providing comprehensive, understandable and accurate assessments of complex issues in line with national and international standards. This is underpinned by its custom software, longstanding relationships with stakeholders and active role in conferences and research efforts around the world.

Pager Power's Experience

Pager Power has undertaken over 450 glint and glare assessments in the UK, Europe and internationally. The company's own glint and glare guidance² is based on industry experience and extensive consultation with industry stakeholders including airports and aviation regulators.

² Pager Power's Glint and Glare Assessment Guidance, Second Edition.

1 INTRODUCTION

1.1 Overview

Pager Power has been retained to assess the possible effects of glint and glare from a proposed solar photovoltaic (PV) development known as Sunnica Energy Farm, located on the border of Cambridgeshire and Suffolk in the UK.

The assessment relates to the possible impact upon surrounding road users, railway operations, dwellings, public right of ways, and aviation activity associated with RAF Mildenhall, RAF Lakenheath, and Cambridge Airport.

This report contains the following:

- Solar development details.
- Explanation of glint and glare.
- Overview of relevant guidance.
- Overview of relevant studies.
- Overview of Sun movement.
- Assessment methodology.
- Identification of receptors.
- Glint and glare assessment for identified receptors.
- Results discussion.

1.2 Glint and Glare Definition

The definition of glint and glare can vary however, the definition used by Pager Power is as follows³:

- Glint a momentary flash of bright light typically received by moving receptors or from moving reflectors.
- Glare a continuous source of bright light typically received by static receptors or from large reflective surfaces.

The term 'solar reflection' is used in this report to refer to both reflection types i.e. glint and glare.

³These definitions are aligned with those of the Federal Aviation Administration (FAA) in the United States of America.

2 SOLAR DEVELOPMENT LOCATION AND DETAILS

2.1 Layout Update

The modelling presented within this report is based on a previous larger layout with the current redline being wholly within the redline previously modelled. The overall results therefore remain entirely valid because any impacts will be less than or equal to the modelled scenario which therefore represents a precautionary approach to assessment.

2.2 Development Location

Figure 1 on the following page shows an aerial image of the previous layout that was used in the modelling⁴. Neighbouring solar panel areas were combined where appropriate and so the area assessed is likely slightly greater than the panel area in reality. This is considered a conservative approach.

The proposed development site plans are presented in Figures 3-1 and 3-2 in the Preliminary Environmental Information Report (PEIR).

⁴ Source: Aerial imagery copyright © 2020 Google.

Figure 1 Assessed solar panel areas

The bounding coordinates have been extrapolated from the previous layout (shown in Figure 3) and are presented in Appendix I. All solar panel areas share the same characteristics and are shown in Table 1 below.

Panel Information			
Azimuth angle (°)	180		
Elevation angle (°)	15 - 35		
Assessed height (m)	1.65 agl		

Table 1 Panel information

The middle of the solar panel has been used as the assessed height in metres above ground level (agl), which has been chosen as it represents the smallest possible variation in height from the bottom and top of the solar panels.

The elevation angle of the solar panels will be between 15 and 35 degrees. The middle elevation angle of 25 degrees has therefore been assessed as this represents the smallest possible variation from the minimum and maximum angles and therefore the smallest possible difference in modelling results.

It can be concluded, based on previous assessment experience, that changing the assessed height and/or elevation angle within the defined ranges will not significantly change the results and conclusions of the report, particularly as most of the receptors will be significantly screened in practice (See Section 5).

2.3 Bifacial Panels

Whilst the potential for effects remains the same due to both faces consisting of a reflective surface, it is deemed very unlikely that significant glare effects from the underside of the solar panels are possible towards the surrounding receptors. This is because this face will almost always be facing away from the Sun and the underside of the panel will be angled downward towards the ground.

Considering the path of the Sun throughout a typical day in the UK, any reflections will only ever go towards the floor. The possibility of glare effects for the optimised face (the face orientated towards the Sun) remains the same.

The effects of bifacial panels have not been considered further within this assessment.

3 GLINT AND GLARE ASSESSMENT METHODOLOGY

3.1 Guidance and Studies

Appendices A and B present a review of relevant guidance and independent studies with regard to glint and glare issues from solar panels. The overall conclusions from the available studies are as follows:

- Specular (mirroring) reflections of the Sun from solar panels are possible;
- The measured intensity of a reflection from solar panels can vary from 2% to 30% depending on the angle of incidence;
- Published guidance shows that the intensity of solar reflections from solar panels are equal to or less than those from water. It also shows that reflections from solar panels are significantly less intense than many other reflective surfaces, which are common in an outdoor environment.

3.2 Background

Details of the Sun's movements and solar reflections are presented in Appendix C.

3.3 Pager Power's Methodology

As there is no standard methodology for assessing glint and glare, Pager Power has developed its own methodology following a peer review of relevant literature, feedback received from key technical stakeholders, and through experience of completing over 450 glint and glare assessments. Using this knowledge and experience, Pager Power has produced its own glint and glare guidance document⁵, which has been provided in the appendices of the PEIR.

The methodology for this glint and glare assessment is as follows:

- Identify receptors in the area surrounding the solar development.
- Consider direct solar reflections from the solar development towards the identified receptors by undertaking geometric calculations.
- Consider the visibility of the panels from the receptor's location. If the panels are not visible from the receptor then no reflection can occur.
- Based on the results of the geometric calculations and visibility of the panels, determine whether a reflection can occur, and if so, at what time it will occur.
- Consider both the solar reflection from the solar development and the location of the direct sunlight with respect to the receptor's position.
- Consider the solar reflection with respect to the published studies and guidance including intensity calculations where appropriate.

⁵ Pager Power's Glint and Glare Assessment Guidance, Second Edition.

• Determine whether a significant detrimental impact is expected in line with the process presented in Appendix D.

Within the Pager Power model, the solar development area is defined, as well as the relevant receptor locations. The result is a chart that states whether a reflection can occur, the duration and the panels that can produce the solar reflection towards the receptor.

3.4 Assessment Methodology and Limitations

Further technical details regarding the methodology of the geometric calculations and limitations are presented in Appendix E and Appendix F.

4 AVIATION RECEPTORS

4.1 Aviation Receptors - Overview

The closest aerodrome to the solar development site is RAF Mildenhall. It is located approximately 2.5km northeast of the nearest solar panel and is operated by the Ministry of Defence (MOD). The following section presents the relevant aviation receptors assessed within this report.

4.2 Air Traffic Control Tower

It is important to determine whether a solar reflection can be experienced by personnel within the ATC Tower. The tower co-ordinates have been extrapolated from aerial imagery. The ground elevation has been taken from OSGB36 terrain data and the and ATC Tower height above ground level has been estimated based on available imagery and online resources⁶.

Figure 2⁷ below shows an aerial image of the ATC Tower relative to the proposed solar farm.

Figure 2 ATC Tower location – aerial image

⁶ A small variation in height will not change the results of the assessment due to the relative location of the ATC Tower to the proposed development.

⁷ Source: Aerial imagery copyright © 2020 Google.

4.3 Approaching Aircraft

It is part of Pager Power's practice and methodology to assess whether a solar reflection can be experienced on the approach paths for the associated approaches. RAF Mildenhall has one operational runway with two approach paths (one from either bearing). The runway designations are as follows:

• Runway 11/29 – Asphalt/concrete.

A geometric glint and glare assessment has been undertaken for both aircraft approach paths as this is considered to be the most critical stage of the flight. The Pager Power approach for determining receptor (aircraft) locations on the approach path is to select locations along the extended runway centre line from 50ft above the runway threshold out to a distance of 2 miles. The height of the aircraft is determined by using a 3-degree descent path relative to the runway threshold height. The receptor details for each runway approach are presented in Appendix G.

4.4 Qualitative Aviation Assessment

There is no formal buffer distance within which aviation effects must be modelled. However, in practice, concerns are most often raised for developments within 10 km of a licensed airport. Requests for modelling at ranges of 10-20 km are far less common. Assessment of aviation effects for developments over 20 km from a licensed airfield is a very unusual requirement.

The following aerodromes are located within 10-20 km of the development:

- RAF Lakenheath is located approximately 10 km north east of the closest solar panel area in the development;
- Cambridge Airport is located approximately 19 km south west of the development.

The location of the aerodromes relative to the proposed development is shown in Figure 3 on the following page⁸.

⁸ Source: Aerial imagery copyright © 2020 Google.

Figure 3 RAF Lakenheath and Cambridge Airport locations

4.4.1 Qualitative Aviation Conclusions

For RAF Lakenheath, the runway is oriented southwest/northeast. This means pilots approaching from the southwest will not be looking towards the panels and cannot be affected. Pilots approaching from the northeast could be facing the general development direction however:

- Reflections towards the north are unlikely to be visible to an approaching pilot at this range for the south-facing panels that have been proposed;
- Effects would be the same or less significant than the modelled receptors for RAF Mildenhall due to being on similar bearings and at a much further distance from the proposed development.

For Cambridge Airport, the distance from the airport is significant and the runway is also orientated southwest/northeast. This means pilots approaching from northeast will not be looking towards the panels and cannot be affected. It can be safely presumed that if effects are possible towards pilots approaching from southwest, the intensity would have 'low potential for temporary after image' in the worst case and will therefore be acceptably low.

Overall, no significant impacts on aviation interests are expected and no further detailed assessment is recommended.

5 GROUND-BASED RECEPTORS

5.1 Ground-Based Receptors - Overview

There is no formal guidance with regard to the maximum distance at which glint and glare should be assessed. From a technical perspective, there is no maximum distance for potential reflections.

However, the significance of a reflection decreases with distance. This is because the proportion of an observer's field of vision that is taken up by the reflecting area diminishes as the separation distance increases. Terrain and shielding by vegetation are also more likely to obstruct an observer's view at longer distances.

Pager Power considers receptors within a 1km buffer appropriate for glint and glare effects on ground-based receptors based upon previous assessments and experience. Receptors within this distance are identified and an initial professional judgement of potential visibility is made based on high-level consideration of aerial photography and mapping i.e. receptors are excluded if it is clear from the outset that no reflections would be possible.

Reflections towards ground-based receptors to the north of the panels are unlikely at this latitude for fixed panels facing south and have therefore been scoped out. A more detailed assessment is undertaken if the modelling reveals a reflection would be geometrically possible.

5.2 Railway Receptors

5.2.1 Signal Receptors

No signals have been identified along the assessed section of railway.

5.2.2 Train Driver Receptors

The impact of a solar reflection upon train drivers is determined by identifying locations along sections of railway that could potentially receive reflections. The analysis has considered sections of railway that:

- Are within one kilometre of the proposed development (see Section 5.1); and
- Have a potential view of the panels.

A total of 103 receptor locations covering approximately 9.7km of railway line have been assessed, approximately every 100m. The location of the assessed train driver receptors (white squares) on the assessed length of railway line is shown in Figure 4 on the following page⁹. The co-ordinate data for the receptor points are presented in Appendix H.

 $^{^{9}}$ Source: Aerial imagery copyright $\ensuremath{\mathbb{C}}$ 2020 Google.

Figure 4 Assessed railway receptors

5.3 Road Receptors

Road types can generally be categorised as:

- Major National Typically a road with a minimum of two carriageways with a maximum speed limit of up to 70mph. These roads typically have fast moving vehicles with busy traffic;
- National Typically a road with a one or more carriageways with a maximum speed limit of up to 60mph or 70mph. These roads typically have fast moving vehicles with moderate to busy traffic density;
- Regional Typically a single carriageway with a maximum speed limit of up to 60mph. The speed of vehicles will vary with a typical traffic density of low to moderate; and
- Local Typically roads and lanes with the lowest traffic densities. Speed limits vary.

Assessment is not recommended for local roads, where traffic volumes and/or speeds are likely to be relatively low, as any solar reflections from the proposed development that are experienced by a road user would be considered 'low' impact in accordance with the guidance presented in Appendix D.

The analysis has therefore considered major national, national, and regional roads that:

- Are within, or close to one kilometre of the proposed development (see Section 5.1); and
- Have a potential view of the panels.

The assessed road receptor points are shown in Figure 5¹⁰ on the following page. A height of 1.5 metres above ground level has been taken as typical eye level for a road user. The co-ordinate data for the receptor points are presented in Appendix H.

¹⁰ Source: Copyright © 2020 Google.

Figure 5 Assessed road receptors

5.4 Public Right of Way and Bridleway Receptors

The analysis has considered public right of ways and bridleways that:

- Are within, or close to one kilometre of the proposed development (see Section 5.1); and
- Have a potential view of the panels.

A height of 1.8 metres above ground level has been taken as the typical eye level for a pedestrian on the public right of way and a height of 3.5 metres above ground level has been taken as the typical eye level for a rider and horse on the bridleways. Terrain elevation heights have been interpolated based on OSGB36 data. The co-ordinates data for the receptor points are presented in Appendix H.

The assessed public right of way (white diamond) and bridleway (yellow diamond) receptor points are shown in Figure 6 on the following page¹¹.

¹¹ Source: Aerial imagery copyright © 2020 Google.

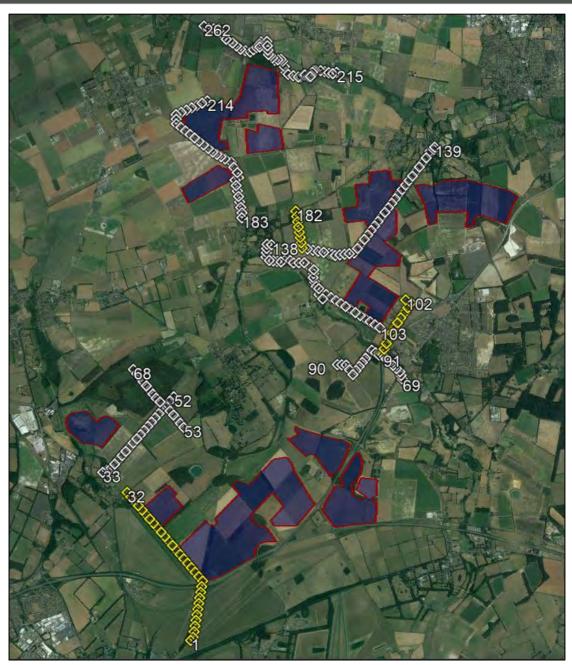


Figure 6 Assessed public right of way and bridleway receptors

5.5 Dwelling Receptors

The analysis has considered dwellings that:

- Are within, or close to one kilometre of the proposed development; and
- Have a potential view of the panels.

In residential areas with many layers of dwellings, only the outer dwellings were considered. This is because the outer layer will mostly block views of the solar panels to dwellings further back and therefore will not be impacted by the solar farm. Any effects upon dwellings with a through view will have similar or less impacts than the closest assessed dwelling.

A height above ground level of 1.8 metres above ground level has been taken as an average eye level for an observer on the ground floor of a dwelling. Terrain elevation heights have been interpolated based on OSGB36 data. The coordinate data for the receptor points are presented in Appendix H

An aerial image of the dwelling locations is shown in Figure 7 below¹².

 $^{^{12}}$ Source: Aerial imagery copyright $\ensuremath{\mathbb{C}}$ 2020 Google.

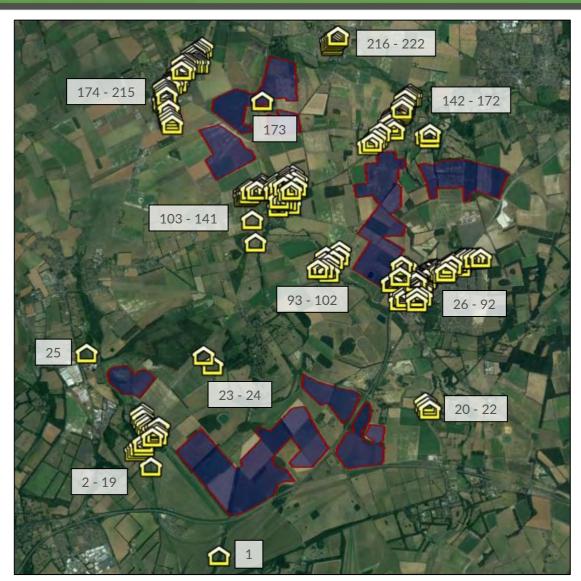


Figure 7 Assessed dwelling receptors

Two further dwelling locations, which were not considered in the initial assessment, have been identified and are shown in Figure 8¹³ on the following page.

 $^{^{\}rm 13}$ Source: Aerial imagery copyright © 2020 Google.

Figure 8 Additional dwelling receptors

5.6 Horse Facility Receptors

The analysis has also included a number of other key receptors relating to horse facilities in the area to determine the impact upon equestrian activity in the area. Sample receptor points were therefore taken at each identified facility.

A height above ground level of 3.5 metres above ground level has been taken as an average eye level for a horse and rider. Terrain elevation heights have been interpolated based on OSGB36 data. The coordinate data for the receptor points are presented in Appendix H

The assessed horse facility receptor points are shown in Figure 9¹⁴ on the following page.

¹⁴ Source: Aerial imagery copyright © 2020 Google.

Figure 9 Assessed horse facility receptors

6 ASSESSED REFLECTOR AREAS

6.1 Overview

The following section presents the modelled reflector areas.

6.2 Reflector Areas

A number of representative panel locations are selected within the proposed reflector areas with the number of modelled reflector points being determined by the size of the reflector area and the assessment resolution. The bounding co-ordinates for the proposed solar development have been extrapolated from the site plans. All ground heights have been based on OSGB36 terrain data.

A resolution of 40m has been chosen for this assessment. This means that a geometric calculation is undertaken for each identified reflector every 40m from within the defined area. This resolution is sufficiently high to maximise the accuracy of the results – increasing the resolution further would not significantly change the modelling output because if a reflection is experienced from an assessed panel location, then it is likely that a reflection will be viewable from similarly located panels within the proposed solar development.

The assessed reflector areas are shown in Figure 10 below.

Figure 10 Assessed reflector areas

7 GLINT AND GLARE ASSESSMENT – TECHNICAL RESULTS

7.1 Overview

The tables in the following sections summarise the results of the assessment. The final column summarises the predicted impact considering the level of identified screening based on a desk-based review of the available imagery (see Sections 8.3 and 8.4). The predicted glare times are only included if it is judged that solar reflections will be unscreened and therefore experienced by an observer. The significance of any predicted impact is discussed in subsequent report sections.

The modelling output for key receptors showing the precise predicted times and the reflecting panel area can be found in Appendix J.

Receptor	Pager Power Results Reflection Possible Towards Receptor?		Glare Type	Comment
	am	pm		
ATC Tower	No.	No.	n/a	No solar reflections geometrically possible. No impact possible.

7.2 Geometric Calculation Results Overview – ATC Tower

Table 2 Geometric analysis results - ATC Tower

7.3 Geometric Calculation Results Overview – Runway 11 Approach

Receptor	Pager Power Results		Glare Type	Comment
	Reflection Possible Towards Receptor?			
	am	pm		
Threshold - 2 miles	No.	No.	n/a	No solar reflections geometrically possible. No impact possible.

 Table 3 Geometric analysis results - Runway 11 Approach

7.4 Geometric Calculation Results Overview – Runway 29 Approach

Receptor	Pager Power Results		Glare Type	Comment
	Reflection Possible Towards Receptor?			
	am	pm		
Threshold - 2 miles	No.	No.	n/a	No solar reflections geometrically possible. No impact possible.

Table 4 Geometric analysis results - Runway 29 Approach

7.5 Geometric Calculation Results Overview – Train Driver Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
1 - 3	No.	No.	No solar reflections geometrically possible. No impact possible.
4 - 46	Yes.	No.	Predicted solar reflections will be significantly screened by existing buildings and existing vegetation. No impact predicted.
47 - 60	No.	No.	No solar reflections geometrically possible. No impact possible.
61 - 103	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.

Table 5 Geometric analysis results - Train driver receptors

7.6 Geometric Calculation Results Overview – Road Receptors

7.6.1 A14 Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
1 - 12	No.	Yes.	Predicted solar reflections will be significantly screened by existing vegetation. No impact predicted.
13	No.	No.	No solar reflections geometrically possible. No impact possible.
14 - 18	No.	Yes.	Predicted solar reflections will be significantly screened by proposed vegetation. No impact predicted.
19 - 35	Yes.	Yes.	Predicted solar reflections will be
36 - 54	No.	Yes.	significantly screened by existing and/or proposed vegetation. No impact predicted.

Table 6 Geometric analysis results - A14

7.6.2 A142 Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
55 - 66	Yes.	No.	Predicted solar reflections will be screened by existing buildings and/or existing vegetation. No impact predicted.
67 - 75	No.	No.	No solar reflections geometrically possible. No impact possible.

Table 7 Geometric analysis results - A142

	Pager Power Results Receptor Reflection Possible Towards Receptor?		
Receptor			Comments
	am	pm	
76 - 99	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
100 - 112	No.	No.	No solar reflections geometrically possible. No impact possible.

7.6.3 B1085 Receptors

Table 8 Geometric analysis results - B1085

7.6.4 A11 Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
113 - 153	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact possible.
154 - 169	No.	No.	No solar reflections geometrically possible. No impact possible.
170 - 175	No.	Yes.	Predicted solar reflections will be significantly screened by existing
176 - 196	Yes.	Yes.	and/or proposed vegetation. No impact predicted.

Table 9 Geometric analysis results - A11

7.6.5 A1304 Receptors

Receptor	Pager Power Results Reflection Possible Towards Receptor?		Comments
	am	pm	
197 - 206	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact possible.
207 - 217	No.	No.	No solar reflections geometrically possible. No impact possible.

Table 10 Geometric analysis results - A1304

7.6.6 B1102 Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
218 - 234	No.	No.	No solar reflections geometrically possible. No impact possible.
235 - 250	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
251 - 257	No.	No.	No solar reflections geometrically possible. No impact possible.

Table 11 Geometric analysis results - B1102

7.7 Geometric Calculation Results Overview – Public Right of Way and Bridleway Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
1 - 11	No.	No.	No solar reflections geometrically possible. No impact possible.
12 - 27	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
28	Between 5:43 and 6:19 from mid- March to late September.	No.	Effects are expected to be reduced by screening in the form of existing vegetation however it is likely that some views of the panels will remain. Discussed in Section 8.7.
29 - 32	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
33 - 39	No.	No.	No solar reflections geometrically possible. No impact possible.
40 - 45	No.	Yes.	Predicted solar reflections will be significantly screened by existing vegetation. No impact predicted.
46	No.	Between 18:01 and 18:07 from mid- March to mid- April. Between 17:51 and 17:59 from the end of August to late September.	Predicted solar reflections will originate from solar panel area I. Discussed in Section 8.7.

PAGERPOWER () Urban & Renewables

	Pager Power Results		-
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
47	No.	Between 18:02 and 18:07 from mid- March to the beginning of April. Between 17:51 and 17:56 from early September to late September.	Predicted solar reflections will originate from solar panel area I. Discussed in Section 8.7.
48 - 55	No.	No.	No solar reflections geometrically possible. No impact possible.
56	No.	Yes.	Predicted solar reflections will be significantly screened by existing vegetation. No impact predicted.
57 - 95	No.	No.	No solar reflections geometrically possible. No impact possible.
96 - 102	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
103 - 106	Yes.	No.	Predicted solar reflections will be significantly screened by proposed vegetation. No impact predicted.
107	Between 05:50 and 06:02 from late March to late June. Between 05:51 and 06:01 from the beginning of July to mid- September.	No.	Predicted solar reflections will originate from solar panel area D. Discussed in Section 8.7.

Pacantar	Pager Power Results Reflection Possible Towards Receptor?		Comments
Receptor	am	pm	Comments
108	Between 05:49 and 06:04 from late March to late September.	No.	Predicted solar reflections will originate from solar panel area D. Discussed in Section 8.7.
109 - 127	Yes.	No.	Predicted solar reflections will be significantly screened by vegetation. No impact possible.
128 - 145	No.	No.	No solar reflections geometrically possible. No impact possible.
146 - 147	No.	Yes.	Predicted solar reflections will be significantly screened by vegetation. No impact possible.
148	Yes.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact possible.
149	Between 05:59 and 06:04 from mid- March to early April. Between 05:48 and 05:53 from mid- September to late September.	Between 17:51 and 18:08 from mid- March to late September.	Predicted solar reflections will originate from solar panel area E in the morning and from solar panel area D in the evening. Discussed in Section 8.6.
150	Yes.	Between 17:51 and 18:08 from mid- March to late September.	Predicted solar reflections in the morning will be significantly screened by vegetation. No impact possible. Predicted solar reflections in the evening will originate from solar panel area D. Discussed in Section 8.7.

Receptor	Pager Power Results Reflection Possible Towards Receptor?		Comments
Receptor	am	pm	Comments
151	Yes.	Between 17:51 and 18:08 from mid- March to late September.	Predicted solar reflections in the morning will be significantly screened by vegetation.
152	Yes.	Between 17:51 and 18:09 from mid- March to late September.	No impact possible. Predicted solar reflections in the evening will originate from solar panel area D. Discussed in Section 8.7.
153	Yes.	Between 17:52 and 18:08 from mid- March to late September.	Predicted solar reflections in the morning will be significantly screened by vegetation. No impact possible. Predicted solar reflections in the evening will originate from solar panel area D. Discussed in Section 8.6.
154 - 158	Yes.	Yes.	Predicted solar reflections will be significantly screened by
159	Yes.	No.	vegetation. No impact possible.
160 - 162	Between 5:49 and 6:06 from mid- March to late September.	No.	Effects are expected to be reduced by screening in the form of existing vegetation however it is likely that some views of the panels will remain. Discussed in Section 8.7.
163 - 182	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
183 - 189	No.	Yes.	Predicted solar reflections will be significantly screened by proposed vegetation. No impact predicted.
190 - 195	No.	No.	No solar reflections geometrically possible. No impact possible.
196 - 214	Yes.	No.	Predicted solar reflections will be significantly screened by proposed vegetation. No impact predicted.
215 - 233	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
234 - 262	No.	No.	No solar reflections geometrically possible. No impact possible.

Table 12 Geometric analysis results - Public right of way and bridleway receptors

7.8 Geometric Calculation Results Overview – Dwelling Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
1	No.	No.	No solar reflections geometrically possible. No impact possible.

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
2 - 19	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
20 - 24	No.	Yes.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
25 - 33	No.	No.	No solar reflections geometrically possible. No impact possible.
34 - 36	No.	Yes.	Predicted solar reflections will be significantly screened by proposed vegetation. No impact predicted.
37 - 39	No.	No.	No solar reflections geometrically possible. No impact possible.
40 - 92	No.	Yes.	Predicted solar reflections will be significantly screened by existing vegetation, proposed vegetation, and/or other dwellings. No impact predicted.
93 - 102	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
103 - 115	No.	No.	No solar reflections geometrically possible. No impact possible.

	Pager Power Results		
Receptor	Reflection Possible	Towards Receptor?	Comments
	am	pm	
116 - 120	No.	Yes.	Predicted solar reflections will be significantly screened by proposed vegetation. No impact predicted.
121 - 125	Yes.	No.	Predicted solar reflections will be significantly screened by existing
126 - 141	Yes.	Yes.	and/or proposed vegetation. No impact predicted.
142 - 144	No.	No.	No solar reflections geometrically possible. No impact possible.
145 - 146	Yes.	No.	Predicted solar reflections will be significantly screened by existing and/or proposed vegetation. No impact predicted.
147 - 172	No.	No.	No solar reflections geometrically possible. No impact possible.
173	Yes.	Yes.	Predicted solar reflections will be significantly screened by existing
174 - 184	Yes.	No.	and/or proposed vegetation. No impact predicted.
185 - 196	Yes.	No.	Predicted solar reflections will be significantly screened by existing vegetation, proposed vegetation and/or other dwellings. No impact predicted.

PAGERPOWER () Urban & Renewables

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
197	Between 05:52 and 06:05 from mid- March to early May. Between 05:48 and 06:02 from the beginning of August to late September.	No.	Predicted solar reflections will originate from solar panel area B, which is over 1km from the dwellings. No impact predicted.
198	Yes.	No.	Predicted solar reflections will be significantly screened by other surrounding dwellings. No impact predicted.
199	Between 05:52 and 06:04 from late March to early May. Between 05:49 and 06:01 from early August to late September.	No.	Predicted solar reflections will originate from solar panel area B, which is over 1km from the dwellings. No impact predicted.
200 - 206	Yes.	No.	Predicted solar reflections will be significantly screened by existing vegetation, proposed vegetation, and/or other dwellings. No impact predicted.
207	Between 05:52 and 06:04 from late March to the beginning of May. Between 05:49 and 06:01 from mid- August to late September.	No.	Predicted solar reflections will originate from solar panel area B, which is over 1km from the dwelling. No impact predicted.
208 - 215	Yes.	No.	Predicted solar reflections will be significantly screened by existing vegetation. No impact predicted.

Receptor	Pager Power Results Reflection Possible Towards Receptor?		Comments
	am	pm	
216 - 222	No.	No.	No solar reflection geometrically possible. No impact possible.
223	Yes.	Yes.	Predicted solar reflections will be significantly screened by existing
224	No.	Yes	and/or proposed vegetation. No impact predicted.

 Table 13 Geometric analysis results - Dwelling receptors

7.9 Geometric Calculation Results Overview – Horse Facility Receptors

	Pager Power Results		
Receptor	Reflection Possible Towards Receptor?		Comments
	am	pm	
Snailwell Gallops			Predicted solar reflections will be significantly screened by
British Racing School	Yes.	No.	existing and/or proposed vegetation.
501001			No impact predicted.
Limekins Gallops			No solar reflection geometrically possible.
			No impact possible.
Godolphin Stables	No.	No.	No solar reflection geometrically
Bury Hill Gallops			possible.
Long Hill Gallops			No impact possible.

Table 14 Geometric analysis results - Horse facility receptors

8 GEOMETRIC ASSESSMENT RESULTS AND DISCUSSION

8.1 Overview

The results of the glint and glare calculations are presented in the following sub-sections.

8.2 Baseline Conditions

The baseline conditions have been taken from the Landscape and Visual Assessment, which has been reproduced below. The full details can be found in 'Chapter 10: Landscape and Visual Amenity':

LVIA Chapter - Chapter 10: Landscape and Visual Amenity

The agricultural land use results in a generally 'open' character to the landscape, although there are notable areas of vegetation, in terms of field boundaries, roadside and residential garden vegetation and woodland blocks, such that the vegetation patterns are varied across the study area.

The published landscape character assessments make reference to the 'pine lines', which are former pine shelterbelts and plantations which were planted in the 18th and 19th centuries to divide and enclose fields, as the pine trees established successfully in the poor soils. Today, the 'pine lines' are linear rows of tall pine trees, as shown in Image 10-1.

Image 10-1: The Pine Lines

To the north of Isleham, the vegetation cover increases adjacent to the River Lark, with mature trees within Isleham Marina, 'The Fen' woodland at the conflux of the Lee Brook and the River Lark, and woodland belts to the south of Mildenhall, adjacent to the River Lark.

Within Freckenham, woodland blocks extend adjacent to Elms Road, Mildenhall Road and to the north of North Street, such that the northern and eastern parts of the village are far more vegetated than the western part, adjacent to Fordham Road.

This pattern of woodland extends between Elms Road and Worlington, including around Worlington Quarry. The Royal Worlington and Newmarket Golf Course is also well vegetated, with mature trees dividing the fairways and bordering the course.

The vegetation cover is less extensive between Freckenham and Isleham, forming the western part of the Sunnica East Site. As such there is a more open character to this part of the study area. Many of the field boundary and roadside hedgerows are in varying condition, with extensive gaps along their length. The main vegetation tracts bordering Isleham are adjacent to the Lee Brook, Mortimer Lane and at Isleham Local Nature Reserve.

Between Freckenham and Chippenham, the vegetation patterns relate to the watercourses, with bankside vegetation adjacent to the Lee Brook and the River Kennett. The fields between Badlingham and properties on Bridge End Road are also divided by narrow tree belts, including pine lines, which are also present through parts of Red Lodge.

Within Chippenham Park, there are clumps of woodland and mature trees adjacent to The Canal, within Ash Wood and Gilford Woods to the west of Chippenham Hall. The pattern of individual trees and woodland blocks continues to the east of Chippenham Park, across Chippenham Lodge and Chippenham Stud, whilst the surrounding fields are open in character.

To the south of Chippenham Park, there are several plantations across the fields forming the Sunnica West Site A, with Foxburrow Plantation bordering a reservoir and Coachroad and Hundred Acre Plantations bordering the Lodge and southern entrance to Chippenham Park.

The Avenue consists of a mature intermittent linear tree belt extending from the north side of the A14 to the A1304. The linear form of this tree belt across the racing school training grounds is reflected in the mature linear hedgerows adjacent to the A1304, the B1506 and The Gallops.

From the northern edge of Newmarket, woodland blocks extend from the A14 towards Snailwell business park and industrial estates.

Within Fordham, the principal vegetation tracts extend through the central part of the village, adjacent to the River Snail, to Fordham Abbey Woods.

The main concentration of vegetation between Burwell and Fordham is at Landwade, with mature woodland blocks around Landwade Hall and along the unnamed watercourse to Exning.

Both Reach and Burwell, in the western part of the study area, are generally well vegetated via residential gardens and roadside vegetation bordering the road networks around the villages.

There is a block of woodland in the south-west part of Burwell, with mature tree belts extending adjacent to Newnham Drove and around Burwell Substation, while mature vegetation extends intermittently adjacent to the Catch Water Drain to Burwell Lode.

There is mature garden vegetation across the north-west part of Burwell, with a narrow block of woodland between the northern edge of Burwell and the business park and sewage works adjacent to Broads Road.

In relation to vegetation patterns along specific roads across the study area:

The A14 trunk road is bordered by mature trees as it extends around Newmarket, with a woodland block at the junction with the A142. Tree belts continue adjacent to the A14 until The Avenue, where the vegetation along the north side of the road is intermittent lower scrub and ruderal grassland across the cut slopes. The junction with the A11 is densely wooded, with tree belts and intermittent trees along both sides of the A14 towards Kentford;

The A11 trunk road is bordered by mature woodland at the junction with the A1304, but the extent of roadside vegetation decreases on the north side of the A11 as it crosses around the A14. From the junction, the roadside vegetation consists of intermittent trees until the junction with La Hogue Road, where tree belts then extend to Red Lodge. To the north of Red Lodge the roadside vegetation is more intermittent, with tracts of ruderal grassland and individual trees, until the River Lark and Mildenhall, where there is extensive woodland;

The A1304, between Newmarket and the A14, is bordered by high hedgerows on both sides of the road for its entire length. This continues until the junction with the A11 and A14 where the vegetation pattern changes to mature woodland. There are occasional breaks within the roadside hedgerows to enable equestrian access between the training grounds;

The B1102 between Burwell and Fordham are predominantly open in character, being bordered by fields. There are hedgerows and intermittent trees in proximity to Newmarket railway line;

The B1506, between Newmarket and Kentford is bordered by high hedgerows on both sides of the road. There are occasional breaks in the hedgerows to enable equestrian access. There are also alternating blocks of woodland adjacent to the road, with mature woodland on the south side of the road on the approach to Newmarket and on the north side of the road on the approach to Kentford;

The B1102, between Freckenham and Worlington (Mildenhall Road / Freckenham Road) is bordered by mature trees within Freckenham. Beyond the village the B1102 is bordered by hedgerows and trees, which extend either side of the junction with Ferry Lane. Hedgerows continue along the west side of the B1102 from the junction with Ferry Lane, with pine lines adjacent to the east side of the road. The height and density of the hedgerows increases on the approach to Worlington, with the roadside vegetation including mature trees;

The B1102, between Freckenham and the B1104 is bordered by hedgerows and mature garden vegetation within Freckenham. This abruptly ceases at the edge of the village, such that the road is bordered by a few intermittent trees. At the approach to the junction with the B1104 the roadside vegetation increases with a hedgerow along the south side of the B1102; and

The B1104, between Isleham and the B1102 is bordered by intermittent hedgerows within Isleham along the east side of the B1104 and mature garden vegetation along the west side of the road. As the B1104 rises over the dismantled railway the road is bordered by tall hedges. However, the vegetation cover decreases substantially along the east side of the remainder of the road to the B1102, with a few intermittent hedgerows, whilst the hedgerow pattern along the west side of the road is more consistent.

8.3 Proposed Screening

The developer has also proposed planting to further reduce the views of the panels. It is understood that this vegetation will grow at 20 centimetres per year. Year 1 proposed native hedgerows would be between 0.6 - 0.8m in height, with existing and proposed hedgerows being managed and maintained between 2 - 3m in height. Tree planting would be between 1 - 3.5m in height, with Year 15 tree planting ranging between 4m and 6.5m in height.

Therefore, there is potential for the proposed screening to not be sufficiently established in Year 1, which means that the assessment will solely rely on the baseline conditions outlined in the previous section. The conclusions based on the baseline conditions have been presented for the ground-based receptors in the proceeding sections.

8.4 ATC Tower

The analysis has shown that solar reflections towards the ATC Tower at RAF Mildenhall are not geometrically possible.

No significant impact upon the ATC Tower is therefore expected.

8.5 Runway 11/29 Approaches

The analysis has shown that solar reflections from the proposed solar development towards either of the RAF Mildenhall 2-mile approach paths for runway 11/29 are not geometrically possible.

No significant impact upon either approach path is therefore expected.

PAGERPOWER () Urban & Renewables

8.6 Railway Results

The process for quantifying impact significance is defined in the report appendices. For train driver receptors, the key considerations are:

- Whether a reflection is predicted in practice.
- The location of the reflecting panel relative to a train driver's direction of travel (a reflection directly in front of a driver is more hazardous than a reflection from a location off to one side).
- The likely workload of the train driver (i.e. is the solar reflection towards a section of track where a signal, crossing, or station is sited).

8.6.1 Overall Results

The modelling has shown that solar reflections are geometrically possible towards 89 out of the 103 assessed train driver receptors along the assessed section of railway. However, screening in the form of existing vegetation, proposed vegetation, and/or surrounding buildings will obstruct views of the reflecting panels for train drivers along the entirety of the railway line and therefore solar reflections will not be experienced in practice.

The sections of railway where solar reflections are geometrically possible (green lines) and areas of significant screening (white areas) are shown in Figure 11 below and Figure 12 on the following page¹⁵.

Overall, no impacts upon train drivers are predicted along the assessed section of railway and no further mitigation is required.

Figure 11 Significantly screened railway receptors 4 to 46

¹⁵ Source: Aerial imagery copyright © 2020 Google.

Figure 12 Significantly screened railway receptors 61 to 103

8.6.2 Baseline Condition Results

Based on baseline conditions, effects are predicted to be experienced by train drivers travelling west/southwest along approximately 200 metres of railway line, shown as the yellow line in Figure 13¹⁶ on the following page.

Although solar reflections will be experienced along this stretch, a train driver is not expected to have a greater workload than normal and will only be in the reflection zone for approximately 8 seconds¹⁷. Solar reflections will also coincide with direct sunlight, which is a far more intense source of light.

No significant impacts are predicted towards the train drivers under baseline conditions and no temporary mitigation is therefore required.

¹⁶ Source: Aerial imagery copyright © 2020 Google.

¹⁷ Based on a speed of 60mph.

Figure 13 Baseline condition railway reflection zone

8.7 Road Results

The process for quantifying impact significance is defined in the report appendices. For road users, the key considerations are:

- Whether a reflection is predicted in practice.
- The type of road (and associated likely traffic levels/speeds).
- The location of the reflecting panel relative to a road user's direction of travel (a reflection directly in front of a driver is more hazardous than a reflection from a location off to one side).

8.7.1 Overall Results

Although the modelling has shown that solar reflections are predicted towards 189 out of the 257 assessed road receptors, all views of the reflecting panels will be obstructed by intervening screening in the form of existing vegetation, proposed vegetation, and/or surrounding buildings. Therefore, effects will not be experienced by a road user in practice.

Figures 14 to 20 on the following pages show the sections of each road where solar reflections are geometrically possible (green lines), as well as the significant screening (white areas) that will obstruct the views of the panels¹⁸.

Overall, no impacts upon road users on the surrounding roads are predicted and no further mitigation is therefore required.

¹⁸ Source: Aerial imagery copyright © 2020 Google.

Figure 14 Significant screened road receptors along the A14

Figure 15 Significant screened road receptors along the A142

Figure 16 Significant screened road receptors along the B1085

Figure 17 Significant screened road receptors along the A11 (Sunnica West)

Figure 18 Significant screened road receptors along the A11 (Sunnica East)

Figure 19 Significant screened road receptors along the A1304

Figure 20 Significant screened road receptors along the B1102

8.7.2 Baseline Condition Results

Based on the baseline conditions, solar reflections views of the reflecting panels are predicted along sections of the A14, B1085, A11, and A1304. The following has therefore been considered for each road:

- A14 Although a road user will only be in the reflection zone momentarily, this is enough to cause a safety hazard due to the classification of the road and the solar reflections originating from inside the road user's main field of view. Significant impacts are possible towards the A14 and temporary mitigation is therefore required;
- B1085 Effects will coincide with direct sunlight which is a far more significant source of light. The significance of the impacts are also reduced due to the minor classification of the road. No significant impacts predicted towards the B1085 and temporary mitigation is therefore not required;
- A11 Solar reflections towards road users will originate from outside of the direction of travel and along just a small stretch of the road. No significant impacts predicted towards A11 and temporary mitigation is therefore not required;
- A1304 Effects will coincide with direct sunlight, which is a far more intense source of light. Solar reflections will also be outside the road user's direction of travel. No significant impacts predicted towards A1304 and temporary mitigation is not required.

Overall, due to the national classification of the road and the solar reflections originating from inside the road user's main field of view, significant impacts are predicted towards a small section of the A14. Temporary screening in the form of solid hoarding along the site boundary is presented in Chapter 16.3.31 of the Preliminary Environmental Information Report (PEIR), which will sufficiently mitigate the identified significant impacts.

8.8 Public Right of Way and Bridleway Results

Compared to road users and train drivers, safety is much less of a concern for pedestrians on a public right of way or horse and riders on a bridleway. Conclusions will therefore be based on the annoyance of a solar reflection for an observer.

The modelling has shown that solar reflections are geometrically possible towards 144 out of the 262 scoped and assessed public right of way and bridleway receptors. However, screening in the form of existing and/or proposed vegetation will significantly block views of the solar panels to pedestrians and horse and riders at the vast majority of the locations along the surrounding public right of ways and bridleways.

The considerations for determining impact significance for observers at locations along the public right of ways and bridleways where views of the reflecting panels is deemed possible are:

- The duration of effects.
- The intensity of potential reflections compared to common outdoor sources of glare.
- The relative position of the Sun and the reflection.
- Associated hazards caused by potential glare.

Therefore, the following is considered:

- Effects would last for up to approximately 20 minutes per day for a static observer (this would be a worst case of 10 minutes in the morning and 10 minutes in the afternoon/evening).
- It should be considered that where reflections are visible to an observer, their intensity will be comparable to reflections from still water. Reflections from solar panels are less intense than reflections from glass or steel.
- Reflections would generally coincide with direct sunlight, such that an observer looking towards a reflecting panel would also be looking towards the Sun. Direct sunlight is significantly more intense than a reflection from a solar panel.
- Reflections towards an observer on a footpath do not have an associated safety hazard

 the worst-case scenario would be discomfort when looking towards a reflecting panel
 and a potential temporary after-image.

Overall, the potential impact on observers using the surrounding public right of ways and horse and riders using the surrounding bridleways is assessed as 'low'. No further mitigation is therefore required.

8.9 Dwelling Results

The process for quantifying impact significance is defined in the report appendices. For dwelling receptors, the key considerations are:

- Whether a significant reflection is predicted in practice.
- The duration of the predicted effects, relative to thresholds of:
 - 3 months per year; and
 - o 60 minutes per day.

8.9.1 Overall Results

The results of the modelling have shown that solar reflections are geometrically possible towards 118 out of the 224 scoped and assessed dwelling receptors. However, the impact upon all dwellings has been assessed as no impact and therefore no further mitigation is required. This is because:

- An observer will not experience solar reflections in practice as views of the panels will be significantly screened by existing vegetation, proposed vegetation, and/or other surrounding dwellings; or
- The dwelling is located over 1km from the reflecting panels and so, although reflections are predicted, they are considered no impact in accordance with the impact significance defined in Appendix D.

Dwellings at each residential area where solar reflections are predicted are shown in Figures 21 to 29 on the following pages¹⁹.

Figure 21 Snailwell dwellings

¹⁹ Source: Aerial imagery copyright © 2020 Google.

Figure 22 Chippenham dwellings

Figure 23 Kennett dwellings

Figure 24 Red Lodge dwellings

Figure 25 Badlingham Manor dwellings

Figure 26 Freckenham dwellings

Figure 27 Worlington dwellings

Figure 28 Isleham dwellings

Figure 29 Additional dwellings

8.9.2 Baseline Condition Results

Based on the baseline conditions, although views of the panels are possible for dwellings surrounding the proposed development, the following has been considered:

- Reflections towards an observer in a dwelling do not have an associated safety hazard the worst-case scenario would be discomfort when looking towards a reflecting panel and a potential temporary after-image;
- Where reflections are visible to an observer, their intensity will be comparable to reflections from still water. Reflections from solar panels are less intense than reflections from glass or steel;
- Reflections would generally coincide with direct sunlight, such that an observer looking towards a reflecting panel would also be looking towards the Sun. Direct sunlight is significantly more intense than a reflection from a solar panel.

Overall, no significant impacts are predicted towards the surrounding dwellings under baseline conditions and no temporary mitigation is therefore required.

8.10 Horse Facility Results

8.10.1 Overall Results

The results of the analysis show that reflections are predicted towards Snailwell Gallops and British Racing School. Effects of solar reflections are unlikely to be experienced in reality as views of the solar panels will be blocked by screening in the form of vegetation surrounding and within the development. The white areas in Figure 30 on the following page show the areas of significant vegetation screening.

Solar reflections will not be experienced by horses or riders at either horse facility, and no impacts are therefore possible.

Figure 30 Horse facilities

8.10.2 Baseline Condition Results

The solar reflections predicted towards the horse facilities are significantly screened by existing vegetation forming the baseline conditions. No impacts are predicted towards the horse facility receptors under baseline conditions and no temporary mitigation is therefore required.

PAGERPOWER () Urban & Renewables

9 OVERALL CONCLUSIONS

9.1 Overall Assessment Results

- Solar reflections are not geometrically possible towards the ATC Tower or approach paths for Runway 11/29 at RAF Mildenhall due to the relative location of the Sun path, reflectors, and receptors across the year. No impacts are therefore possible, and no further mitigation is required.
- No detailed assessment is recommended for RAF Lakenheath or Cambridge Airport due to the distance from the development and orientation of the runways. It can be safely determined that, based on the assessment criteria, if solar reflections are possible, intensities would have a 'low potential for temporary after image' and would therefore be acceptably low in accordance with FAA guidance.
- Solar reflections are geometrically possible towards 89 out of the 103 assessed train driver receptors along the assessed section of railway line. Solar reflections will however not be experienced in practice due to significant screening in the form of existing vegetation, proposed vegetation, and/or surrounding buildings, which will significantly obstruct the views of the reflecting panels. No impacts are predicted upon train drivers and no further mitigation is therefore required.
- Although solar reflections are geometrically possible towards 189 out of the 257 scoped and assessed road receptors, no effects are predicted in practice due to the screening in the form of existing vegetation, proposed vegetation, and/or surrounding buildings, which will significantly obstruct views of the reflecting panels. No impacts upon surrounding road users is therefore predicted and no further mitigation is required.
- Screening in the form of existing and proposed vegetation will significantly obstruct the visibility of the reflecting panels for most observers along the surrounding public right of ways bridleways. The potential impact in the context of annoyance on the remaining observers and riders who have views of the panels has been assessed as 'low' and no further mitigation is therefore required.
- Although solar reflections are geometrically possible for 116 out of the 222 scoped and assessed dwelling receptors, no impacts are predicted in practice and therefore no further mitigation is required. This is because for most of these dwellings, an observer will not experience solar reflections in practice as views of the panels will be significantly screened by existing vegetation, proposed vegetation, and/or other surrounding dwellings. The remaining dwellings are located over 1km from the reflecting panels and so, although reflections are predicted, they are considered no impact in accordance with the assessment methodology presented in Section 3.
- Solar reflections are geometrically possible towards the Snailwell Gallops and British Racing School. Screening in the form of existing and/or proposed vegetation will however completely block views of the solar panels to both horse facilities and as a result no impacts are predicted, and no further mitigation is required.

9.2 Baseline Condition Assessment Results

- Effects are predicted towards train drivers along approximately 200 metres of railway line; however, a train driver is not expected to have a greater workload than normal and will only be in the reflection zone for approximately 8 seconds. Solar reflections will also coincide with direct sunlight, which is a far more intense source of light. No significant impacts are predicted towards the train drivers under baseline conditions and no temporary mitigation is therefore required.
- Overall, due to the national classification of the road and the solar reflections originating from inside the road user's main field of view, significant impacts are predicted towards a small section of the A14. Temporary mitigation is therefore required and is identified in Chapter 16.3.31 of the Preliminary Environmental Information Report.
- Solar reflections are predicted towards sections of the B1085, A11, and A1304 however significant impacts are not predicted due to a number of mitigating factors including the classification of the road, the location of the solar reflection relative to the road user's main field of view, and the existing sunlight effects.
- Significant impacts are predicted towards a small section of the A14 due to the national classification of the road and the solar reflections originating from inside the road user's main field of view. Temporary mitigation is therefore required along the site boundary to remove views of the reflecting panels.
- Solar reflections predicted towards the horse facilities are significantly screened by existing vegetation forming the baseline conditions. No impacts are predicted towards the horse facilities and no temporary mitigation is therefore required.

9.3 Overall Conclusions

No impacts are possible for RAF Mildenhall as no solar reflections are predicted towards any of the scoped and assessed aviation receptors. No detailed modelling is recommended for RAF Lakenheath or Cambridge Airport as no significant impacts are anticipated at their respective distances and locations. This is based on past assessment experience.

Under baseline conditions, significant impacts are predicted towards a small section of the A14. Temporary screening in the form of solid hoarding along the site boundary is however presented in Chapter 16.3.31 of the Preliminary Environmental Information Report (PEIR), which will sufficiently mitigate the identified significant impacts. No significant impacts have been identified for the remaining assessed ground-based receptors, and no further temporary mitigation requirement has been identified.

Once the proposed screening has established, all railway and road receptors, as well as most dwelling, public right of way, and bridleway receptors, will be significantly screened by existing vegetation, proposed vegetation, and/or surrounding buildings. The impact upon the remaining dwelling, public right of way, and bridleway receptors that do have potential views of the panels has been assessed and considered 'low' in the worst-case. No significant impacts are therefore predicted, and no further mitigation requirement has therefore been identified.

APPENDIX A - OVERVIEW OF GLINT AND GLARE GUIDANCE

Overview

This section presents details regarding the relevant guidance and studies with respect to the considerations and effects of solar reflections from solar panels, known as 'Glint and Glare'.

This is not a comprehensive review of the data sources, rather it is intended to give an overview of the important parameters and considerations that have informed this assessment.

UK Planning Policy

Renewable and Low Carbon Energy

UK Planning Practice Guidance dictates that in some instances a glint and glare assessment is required, however, there is no specific guidance with respect to the methodology for assessing the impact of glint and glare. The planning policy from the Department for Communities and Local Government (paragraph 27²⁰) dictates:

'Particular factors a local planning authority will need to consider include... the effect on landscape of glint and glare and on neighbouring uses and aircraft safety.'

The National Planning Policy Framework for Renewable and Low Carbon Energy²¹ (specifically regarding the consideration of solar developments) dictates:

'What are the particular planning considerations that relate to large scale ground-mounted solar photovoltaic Farms?

The deployment of large-scale solar farms can have a negative impact on the rural environment, particularly in undulating landscapes. However, the visual impact of a well-planned and well-screened solar farm can be properly addressed within the landscape if planned sensitively.

Particular factors a local planning authority will need to consider include:

- the proposal's visual impact, the effect on landscape of glint and glare (see guidance on landscape assessment) and on neighbouring uses and aircraft safety;
- the extent to which there may be additional impacts if solar arrays follow the daily movement of the sun;

The approach to assessing cumulative landscape and visual impact of large scale solar farms is likely to be the same as assessing the impact of wind turbines. However, in the case of ground-mounted solar panels it should be noted that with effective screening and appropriate land topography the area of a zone of visual influence could be zero.'

 ²⁰ Source: http://planningguidance.planningportal.gov.uk/blog/guidance/renewable-and-low-carbon-energy/
 ²¹ Source: Reference ID: 5-013-20140306, paragraph 13-13,

http://planningguidance.planningportal.gov.uk/blog/guidance/renewable-and-low-carbon-energy/particular-planning-considerations-for-hydropower-active-solar-technology-solar-farms-and-wind-turbines/

National Policy Statement for Renewable Energy Infrastructure

The National Policy Statement for Renewable Energy Infrastructure²² does not mention glint and glare and so no specific requirements are made for the planning of solar farms.

Local Planning Documents

The East Cambridgeshire District Council Supplementary Planning Document²³ does not mention glint and glare and so no specific requirements are made for the planning of solar farms in this district.

No local planning guidance for renewable energy projects were found for West Suffolk and so there are no specific requirements for the planning of solar farms in this district.

Railway Assessment Guidelines

The following section provides an overview of the relevant railway guidance with respect to the siting of signals on railway lines. Network Rail is the stakeholder of the UK's railway infrastructure. Whilst the guidance is not strictly applicable in Ireland, the general principles within the guidance are expected to apply.

A railway operator's concerns would likely to relate to the following:

- 1. The development producing solar glare that affects train drivers; and
- 2. The development producing solar reflections that affect railway signals.

Railway guidelines are presented below. These relate specifically to the sighting distance for railway signals.

Determining the Field of Focus

The extract below is taken from section 3.2 (pages 62-63) of the 'Guidance on Signal Positioning and Visibility'²⁴ which details the visibility of signals, train drivers' field of vision and the implications with regard to signal positioning.

'The visibility of signals

3.2.1 Overview

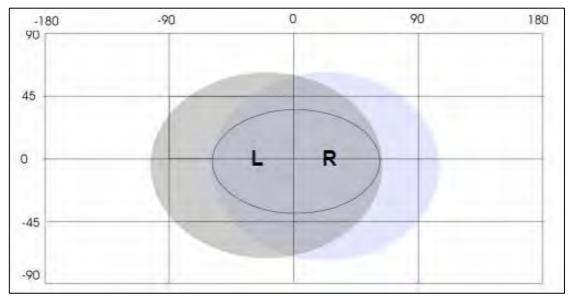
The effectiveness of an observer's visual system in detecting the existence of a target will depend upon the object's position in the observer's visual field, its contrast with its background, its luminance properties, and the observer's adaptation to the illumination level of the environment. It is also influenced by the processes relating to colour vision, visual accommodation, and visual acuity. Each of these issues is described below.

3.2.2 Field of vision

²² Source:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/47856/1940-nps-renewable-energy-en3.pdf

 $^{^{23}} Source: https://www.eastcambs.gov.uk/sites/default/files/Renewable%20Energy%20SPD%20Final_0.pdf$


²⁴ Source: Guidance on Signal Positioning and Visibility, December 2003. Railway Group Guidance Note. Last accessed 18.10.2016

The field of vision, or visual field, is the area of the visual environment that is registered by the eyes when both eyes and head are held still. The normal extent of the visual field is approximately 135 degrees in the vertical plane and 200 degrees in the horizontal plane.

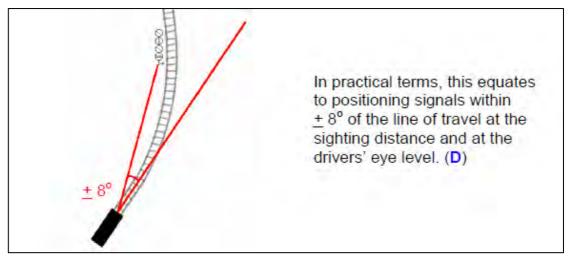
The visual field is normally divided into central and peripheral regions: the central field being the area that provides detailed information. This extends from the central point (0 degrees) to approximately 30 degrees at each eye. The peripheral field extends from 30 degrees out to the edge of the visual field.

Objects are seen more quickly and identified more accurately if they are positioned towards the centre of the observer's field of vision, as this is where our sensitivity to contrast is highest. Peripheral vision is particularly sensitive to movement and light.

In the diagram above, the two shaded regions represent the view from the left eye (L) and the right eye (R) respectively. The darker shaded region represents the region of binocular overlap. The oval in the centre represents the central field of vision.

Research has shown that vehicle drivers search for signs/signals towards the centre of the field of vision. As approach speed increases, drivers demonstrate a tunnel vision effect and focus only on objects in a field of $+ 8^{\circ}$ from the direction of travel.

3.2.2.1 Relevance


Drivers become increasingly dependent on central vision for signal detection at increasing train speeds, and even minor distractions can reduce the visibility of the signal if it is viewed towards the peripheral field of vision. (D I)

Because of our sensitivity to movement in the peripheral field, the presence of clutter to the sides of the running line, for example, fence posts, lamp-posts, traffic, or non-signal lights, such as house, factory or security lights, can be highly distracting. (D I)

Implications

Signals should be at a height and distance from the running line that permits them to be viewed towards the centre of the field of vision. (D)

Signal positioning

'Car stop' signs should be positioned such that, if practicable, platform starting signals and 'OFF' indicators can be seen in the driver's central field of vision. (D)

If possible, clutter and non-signal lights in a driver's field of view should be screened off or removed so that they do not cause distraction. (D I)

The distance at which the 8° cone along the track is initiated is dependent on the minimum reading time and distance which is associated to the speed of trains along the track. This is discussed below.

Determining the Assessed Minimum Reading Time

The extract below is taken from section B5 (pages 8-9) of the 'Guidance on Signal Positioning and Visibility' which details the required minimum reading time for a train driver when approaching a signal.

'B5.2.2 Determining the assessed minimum reading time

GE/RT8037

The assessed minimum reading time shall be no less than eight seconds travelling time before the signal.

The assessed minimum reading time shall be greater than eight seconds where there is an increased likelihood of misread or failure to observe. Circumstances where this applies include, but are not necessarily limited to, the following:

a) the time taken to identify the signal is longer (for example, because the signal being viewed is one of a number of signals on a gantry, or because the signal is viewed against a complex background)

b) the time taken to interpret the information presented by the signal is longer (for example, because the signal is capable of presenting route information for a complex layout ahead)

c) there is a risk that the need to perform other duties could cause distraction from viewing the signal correctly (for example, the observance of lineside signs, a station stop between the caution and stop signals, or DOO (P) duties)

d) the control of the train speed is influenced by other factors (for example, anticipation of the signal aspect changing).

The assessed minimum reading time shall be determined using a structured format approved by the infrastructure controller.'

The distance at which a signal should be clearly viewable is determined by the maximum speed of the trains along the track. If there are multiple signals present at a location, then an additional 0.2 seconds reading time is added to the overall viewing time.

Signal Design and Lighting System

Many railway signals are now LED lights and not filament (incandescent) bulbs. The benefits of an LED signal over a filament bulb signal with respect to possible phantom aspect illuminations are as follows:

- An LED railway signal produces a more intense light making them more visible to approaching trains when compared to the traditional filament bulb technology²⁵;
- No reflective mirror is present within the LED signal itself unlike a filament bulb. The presence of the reflective surfaces greatly increases the likelihood of incoming light being reflecting out making the signal appear illuminated;
- Many LED signal manufacturers^{26,27,28} claim that LED signal lights significantly reduce or completely remove the likelihood of a phantom aspect illumination occurring.

It may therefore be useful to determine the bulb type used in any identified signals, if required.

Assessment Process – Ground-Based Receptors

No process for determining and contextualising the effects of glint and glare are, however, provided for assessing the impact of solar reflections upon surrounding roads and dwellings. Therefore, the Pager Power approach is to determine whether a reflection from the proposed solar development is geometrically possible and then to compare the results against the relevant guidance/studies to determine whether the reflection is significant. The Pager Power approach has been informed by the policy presented above, current studies (presented in Appendix B) and stakeholder consultation. Further information can be found in Pager Power's Glint and Glare Guidance document²⁹ which was produced due to the absence of existing guidance and a specific standardised assessment methodology.

²⁵ Source: Wayside LED Signals – Why it's Harder than it Looks, Bill Petit.

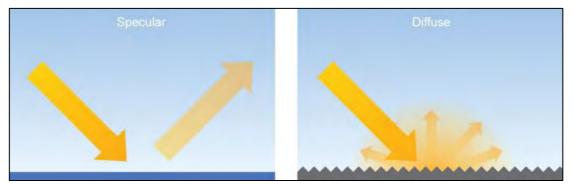
²⁶ Source: http://www.unipartdorman.co.uk/Product%20Bulletins/Unipart%20Dorman%20iLS.pdf. (Last accessed 27.02.15).

²⁷ Source: http://www.vmslimited.co.uk/pdf/Rail_LED_colour_light.pdf. (Last accessed 27.02.15).

²⁸ Source: http://alstomsignalingsolutions.com/Data/Documents/Signal_2011_12.pdf. (Last accessed 27.02.15).

²⁹ Solar Photovoltaic Development – Glint and Glare Guidance, Second Edition 2, October 2018. Pager Power.

APPENDIX B - OVERVIEW OF GLINT AND GLARE STUDIES


Overview

Studies have been undertaken assessing the type and intensity of solar reflections from various surfaces including solar panels. An overview of these studies is presented below.

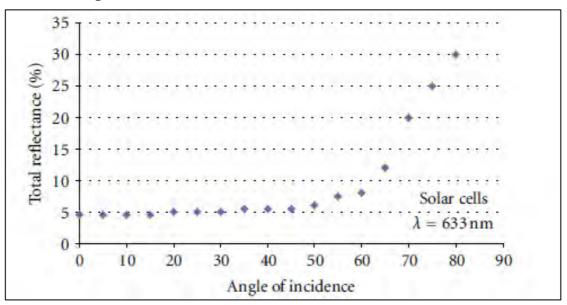
There are no specific studies for determining the effect of reflections from solar panels with respect to dwellings. The guidelines presented are related to aviation safety. The results are applicable for the purpose of this analysis.

Reflection Type from Solar Panels

Based on the surface conditions reflections from light can be specular and diffuse. A specular reflection has a reflection characteristic similar to that of a mirror; a diffuse will reflect the incoming light and scatter it in many directions. The figure below³⁰, taken from the FAA guidance, illustrates the difference between the two types of reflections. Because solar panels are flat and have a smooth surface most of the light reflected is specular, which means that incident light from a specific direction is reradiated in a specific direction.

Specular and diffuse reflections

³⁰ http://www.faa.gov/airports/environmental/policy_guidance/media/airport_solar_guide_print.pdf



Solar Reflection Studies

An overview of content from identified solar panel reflectivity studies is presented in the subsections below.

Evan Riley and Scott Olson, "A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems"

Evan Riley and Scott Olson published in 2011 their study titled: A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems³¹". They researched the potential glare that a pilot could experience from a 25 degree fixed tilt PV system located outside of Las Vegas, Nevada. The theoretical glare was estimated using published ocular safety metrics which quantify the potential for a postflash glare after-image. This was then compared to the postflash glare after-image caused by smooth water. The study demonstrated that the reflectance of the solar cell varied with angle of incidence, with maximum values occurring at angles close to 90 degrees. The reflectance values varied from approximately 5% to 30%. This is shown on the figure below.

Total reflectance % when compared to angle of incidence

The conclusions of the research study were:

- The potential for hazardous glare from flat-plate PV systems is similar to that of smooth water;
- Portland white cement concrete (which is a common concrete for runways), snow, and structural glass all have a reflectivity greater than water and flat plate PV modules.

FAA Guidance- "Technical Guidance for Evaluating Selected Solar Technologies on Airports"³²

³¹ Evan Riley and Scott Olson, "A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems," ISRN Renewable Energy, vol. 2011, Article ID 651857, 6 pages, 2011. doi:10.5402/2011/651857

³² FAA, November (2010): Technical Guidance for Evaluating Selected Solar Technologies on Airports.

The 2010 FAA Guidance included a diagram which illustrates the relative reflectance of solar panels compared to other surfaces. The figure shows the relative reflectance of solar panels compared to other surfaces. Surfaces in this figure produce reflections which are specular and diffuse. A specular reflection (those made by most solar panels) has a reflection characteristic similar to that of a mirror. A diffuse reflection will reflect the incoming light and scatter it in many directions. A table of reflectivity values, sourced from the figure³³ within the FAA guidance, is presented below.

Surface	Approximate Percentage of Light Reflected ³⁴
Snow	80
White Concrete	77
Bare Aluminium	74
Vegetation	50
Bare Soil	30
Wood Shingle	17
Water	5
Solar Panels	5
Black Asphalt	2

Relative reflectivity of various surfaces

Note that the data above does not appear to consider the reflection type (specular or diffuse).

An important comparison in this table is the reflectivity compared to water which will produce a reflection of very similar intensity when compared to that from a solar panel. The study by Riley and Olsen study (2011) also concludes that still water has a very similar reflectivity to solar panels.

³³ http://www.faa.gov/airports/environmental/policy_guidance/media/airport_solar_guide_print.pdf

 $^{^{34}}$ Extrapolated data, baseline of 1,000 W/m² for incoming sunlight.

SunPower Technical Notification (2009)

SunPower published a technical notification³⁵ to 'increase awareness concerning the possible glare and reflectance impact of PV Systems on their surrounding environment'. The study revealed that the reflectivity of a solar panel is considerably lower than that of 'standard glass and other common reflective surfaces'. With respect to aviation and solar reflections observed from the air, SunPower has developed several large installations near airports or on Air Force bases. It is stated that these developments have all passed FAA or Air Force standards with all developments considered "No Hazard to Air Navigation". The note suggests that developers discuss any possible concerns with stakeholders near proposed solar farms.

Figures within the document show the relative reflectivity of solar panels compared to other natural and manmade materials including smooth water, standard glass and steel. The results, similarly to those from Riley and Olsen study (2011) and the FAA (2010), show that solar panels produce a reflection that is less intense than those produced from these surfaces.

³⁵ Technical Support, 2009. SunPower Technical Notification- Solar Module Glare and Reflectance.

APPENDIX C – OVERVIEW OF SUN MOVEMENTS AND RELATIVE REFLECTIONS

The Sun's position in the sky can be accurately described by its azimuth and elevation. Azimuth is a direction relative to true north (horizontal angle i.e. from left to right) and elevation describes the Sun's angle relative to the horizon (vertical angle i.e. up and down).

The Sun's position can be accurately calculated for a specific location. The following data being used for the calculation:

- Time.
- Date.
- Latitude.
- Longitude.

The following is true at the location of the solar development:

- The Sun is at its highest around midday and is to the south at this time.
- The Sun rises highest on 21 June (longest day).
- On 21 December, the maximum elevation reached by the Sun is at its lowest (shortest day).

The combination of the Sun's azimuth angle and vertical elevation will affect the direction and angle of the reflection from a reflector.

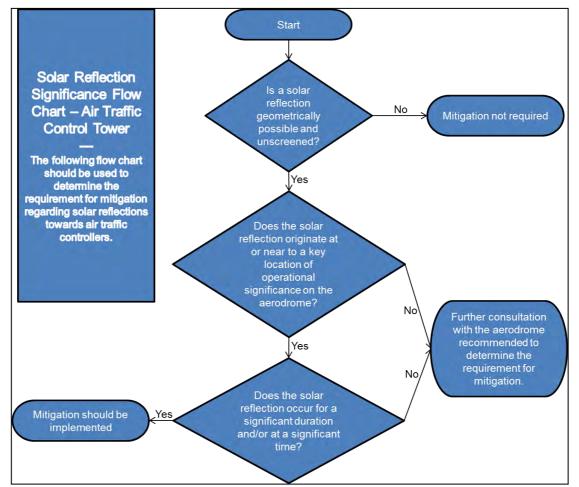
APPENDIX D - GLINT AND GLARE IMPACT SIGNIFICANCE

Overview

The significance of glint and glare will vary for different receptors. The following section presents a general overview of the significance criteria with respect to experiencing a solar reflection.

Impact Significance Definition

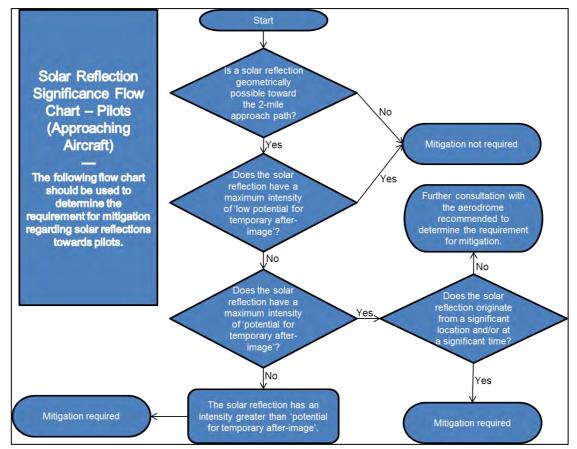
The table below presents the recommended definition of 'impact significance' in glint and glare terms and the requirement for mitigation under each.


Impact Significance	Definition	Mitigation Requirement
No Impact	A solar reflection is not geometrically possible or will not be visible from the assessed receptor.	No mitigation required.
Low	A solar reflection is geometrically possible however any impact is considered to be small such that mitigation is not required e.g. intervening screening will limit the view of the reflecting solar panels.	No mitigation required.
Moderate	A solar reflection is geometrically possible and visible for less than either 60 minutes per day or 3 months per year and therefore occurring under conditions that do not represent a worst-case.	Whilst the impact may be acceptable, consultation and/or further analysis should be undertaken to determine the requirement for mitigation.
Major	A solar reflection is geometrically possible and visible for more than 60 minutes per day and more than 3 months per year and therefore under conditions that will produce a significant impact.	Mitigation will be required if the proposed solar development is to proceed.
	Mitigation and consultation is recommended.	

Impact significance definition

Assessment Process - ATC Tower

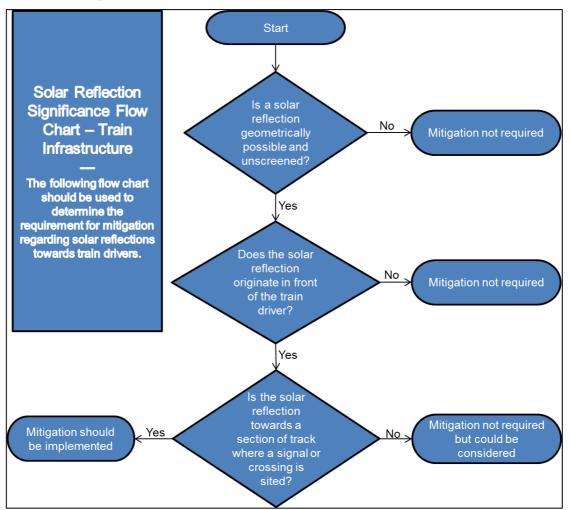
The charts relate to the determining the potential impact upon the ATC Tower.



ATC Tower mitigation requirement flow chart

Assessment Process – Approaching Aircraft

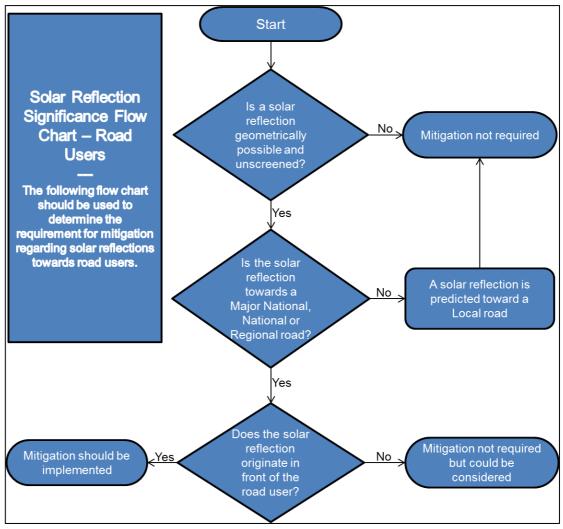
The flow chart presented below has been followed to determine the potential impact upon approaching aircraft.



Approaching aircraft receptor mitigation requirement flow chart

Assessment process for Train Driver Receptors

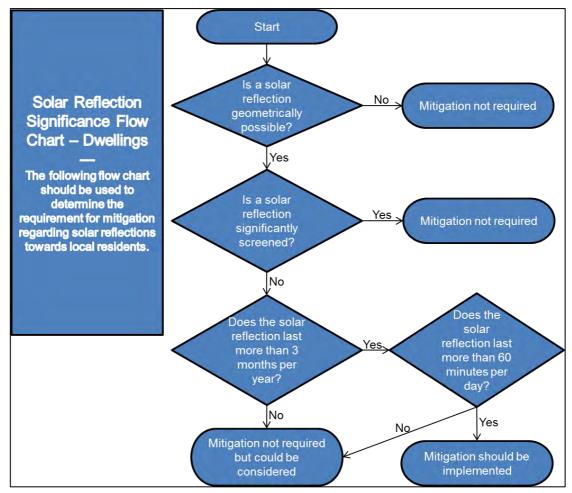
The flow chart presented below has been followed to determine the mitigation requirement for train driver receptors.



Train driver receptor mitigation requirement flow chart (solar panels)

Assessment Process for Road Receptors

The flow chart presented below has been followed to determine the mitigation requirement for road receptors.

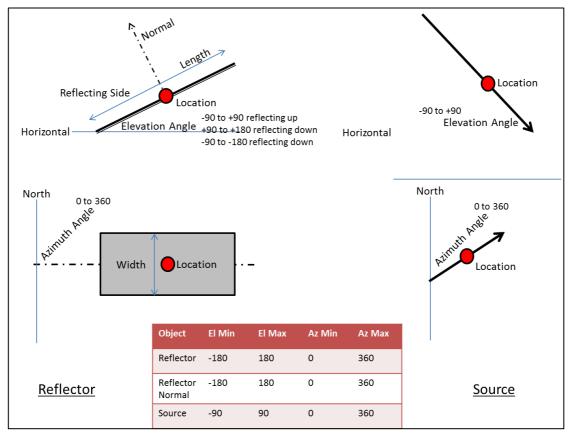


Road receptor mitigation requirement flow chart

Assessment Process for Dwelling Receptors

The flow chart presented below has been followed to determine the mitigation requirement for dwelling receptors.

Dwelling receptor mitigation requirement flow chart



APPENDIX E - PAGER POWER'S REFLECTION CALCULATIONS METHODOLOGY

The calculations are three dimensional and complex, accounting for:

- The Earth's orbit around the Sun;
- The Earth's rotation;
- The Earth's orientation;
- The reflector's location;
- The reflector's 3D Orientation.

Reflections from a flat reflector are calculated by considering the normal which is an imaginary line that is perpendicular to the reflective surface and originates from it. The diagram below may be used to aid understanding of the reflection calculation process.

The following process is used to determine the 3D Azimuth and Elevation of a reflection:

- Use the Latitude and Longitude of reflector as the reference for calculation purposes;
- Calculate the Azimuth and Elevation of the normal to the reflector;
- Calculate the 3D angle between the source and the normal;

- If this angle is less than 90 degrees a reflection will occur. If it is greater than 90 degrees no reflection will occur because the source is behind the reflector;
- Calculate the Azimuth and Elevation of the reflection in accordance with the following:
 - The angle between source and normal is equal to angle between normal and reflection;
 - Source, Normal and Reflection are in the same plane.

APPENDIX F - ASSESSMENT LIMITATIONS AND ASSUMPTIONS

Pager Power's Model

- The modelling has been based on an elevation angle of 25 degrees. It is assumed that this panel elevation angle represents the elevation angle for all of the panels within the solar development unless otherwise stated. As stated in the report, a variation in the defined range of angle (15-35) will not significantly change the results of the report, particularly as most effects will be screened.
- It is assumed that the panel azimuth angle provided by the developer represents the azimuth angle for all of the panels within the solar development unless otherwise stated.
- Only a reflection from the face of the panel has been considered. Solar reflections from the frame have not been considered as the they represent a much lower surface area than the solar panels and will therefore not significantly add to the effects.
- The model assumes that a receptor can view the face of every panel within the proposed development area whilst this, in most cases, will not occur due to, for example, shielding from other solar panels. Therefore, any predicted reflection from the face of a solar panel that is not visible to a receptor will not occur and the overall predicted reflection time is likely to be reduced in practice. This is in line with the conservative approach to the assessment.
- A finite number of points within the proposed development are chosen based on an assessment resolution so we can build a comprehensive understanding of the entire development. The calculations do not incorporate all of the possible panel locations within the development outline but will determine whether a reflection could ever occur at a chosen receptor and provide sufficient basis to understand the overall significance of the effects.
- A single reflection point on the panel has been chosen for the geometric calculations. This will suitably determine whether a reflection can be experienced at a location and the general time of year and duration of this reflection. Increased accuracy could be achieved by increasing the number of heights assessed however this would only marginally change the results and is not considered significant enough to change the conclusions of the report.
- Whilst line of sight to the development from receptors has been considered, only available street view imagery and satellite mapping has been used. In some cases, this imagery may not be up to date and may not give the full perspective of the installation from the location of the assessed receptor. In this case, the imagery was taken from 2018 and is expected to representative of the perspective at each location.

APPENDIX G - AVIATION RECEPTOR DETAILS

ATC Receptor Details

The details are presented in the table below.

Longitude (°)	Latitude (°)	Ground Height (m amsl)		
0.484073	52.367041	9	20	29

ATC tower receptor details

The Approach Path for Aircraft Landing on Runway 11

The table below presents the data for the assessed locations for aircraft on approach to runway 05. The altitude of the aircraft is based on a 3-degree descent path referenced to 50 feet (15.2m) above the runway threshold (8.23m/27ft amsl).

No.	Longitude (°)	Latitude (°)	Distance from Runway Threshold (m)	Assessed Altitude (m) (m amsl)
0	0.46633	52.36483	Threshold	23.47
1	0.46402	52.36517	160.9	31.89
2	0.46172	52.36551	321.9	40.31
3	0.45941	52.36584	482.8	48.74
4	0.45710	52.36618	643.7	57.16
5	0.45480	52.36652	804.7	65.58
6	0.45249	52.36686	965.6	74.01
7	0.45018	52.36720	1126.5	82.43
8	0.44788	52.36754	1287.5	90.85
9	0.44557	52.36787	1448.4	99.27
10	0.44327	52.36821	1609.3	107.70
11	0.44096	52.36855	1770.3	116.12
12	0.43865	52.36889	1931.2	124.54

PAGERPOWER () Urban & Renewables

No.	Longitude (°)	Latitude (°)	Distance from Runway Threshold (m)	Assessed Altitude (m) (m amsl)
13	0.43635	52.36923	2092.1	132.96
14	0.43404	52.36956	2253.1	141.39
15	0.43173	52.36990	2414.0	149.81
16	0.42943	52.37024	2575.0	158.23
17	0.42712	52.37058	2735.9	166.65
18	0.42482	52.37092	2896.8	175.08
19	0.42251	52.37125	3057.8	183.50
20	0.42020	52.37159	2 miles	191.92

Assessed receptor (aircraft) locations on the approach path for runway 11

The Approach Path for Aircraft Landing on Runway 29

The table below presents the data for the assessed locations for aircraft on approach to runway 23. The altitude of the aircraft is based on a 3-degree descent path referenced to 50 feet (15.2m) above the runway threshold (10.06m/33ft amsl).

No.	Longitude (°)	Latitude (°)	Distance from Runway Threshold (m)	Assessed Altitude (m) (m amsl)
0	0.50648	52.35903	Threshold	25.30
1	0.50879	52.35869	160.9	33.72
2	0.51109	52.35835	321.9	42.14
3	0.51340	52.35802	482.8	50.57
4	0.51570	52.35768	643.7	58.99
5	0.51801	52.35734	804.7	67.41
6	0.52032	52.35700	965.6	75.83
7	0.52262	52.35666	1126.5	84.26
8	0.52493	52.35633	1287.5	92.68

No.	Longitude (°)	Latitude (°)	Distance from Runway Threshold (m)	Assessed Altitude (m) (m amsl)
9	0.52723	52.35599	1448.4	101.10
10	0.52954	52.35565	1609.3	109.52
11	0.53185	52.35531	1770.3	117.95
12	0.53415	52.35497	1931.2	126.37
13	0.53646	52.35464	2092.1	134.79
14	0.53876	52.35430	2253.1	143.22
15	0.54107	52.35396	2414.0	151.64
16	0.54338	52.35362	2575.0	160.06
17	0.54568	52.35328	2735.9	168.48
18	0.54799	52.35294	2896.8	176.91
19	0.55029	52.35261	3057.8	185.33
20	0.55260	52.35227	2 miles	193.75

Assessed receptor (aircraft) locations on the approach path for runway 29

APPENDIX H - GROUND RECEPTOR DETAILS

Terrain Height

All ground heights are interpolated based on OSGB Panorama data.

Railway Receptor Data

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
113	0.52089	52.32915	166	0.47514	52.29439
114	0.51993	52.32863	167	0.47462	52.29360
115	0.51888	52.32821	168	0.47384	52.29285
116	0.51765	52.32772	169	0.47307	52.29210
117	0.51640	52.32734	170	0.47229	52.29135
118	0.51492	52.32692	171	0.47152	52.29060
119	0.51369	52.32649	172	0.47090	52.28981
120	0.51217	52.32582	173	0.47010	52.28907
121	0.51090	52.32511	174	0.46938	52.28830
122	0.50977	52.32435	175	0.46874	52.28767
123	0.50883	52.32358	176	0.46779	52.28676
124	0.50817	52.32287	177	0.46712	52.28602
125	0.50745	52.32185	178	0.46638	52.28527
126	0.50693	52.32101	179	0.46560	52.28449
127	0.50633	52.32022	180	0.46486	52.28375
128	0.50570	52.31947	181	0.46410	52.28301
129	0.50490	52.31876	182	0.46330	52.28224
130	0.50403	52.31801	183	0.46253	52.28150

PAGERPOWER	
Urban & Renewables	

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
131	0.50319	52.31733	184	0.46183	52.28079
132	0.50232	52.31660	185	0.46098	52.28005
133	0.50147	52.31597	186	0.46003	52.27934
134	0.50060	52.31531	187	0.45913	52.27861
135	0.49972	52.31458	188	0.45816	52.27797
136	0.49879	52.31386	189	0.45718	52.27734
137	0.49783	52.31320	190	0.45621	52.27670
138	0.49686	52.31253	191	0.45523	52.27607
139	0.49599	52.31198	192	0.45426	52.27543
140	0.49476	52.31150	193	0.45328	52.27480
141	0.49360	52.31102	194	0.45231	52.27416
142	0.49240	52.31062	195	0.45133	52.27352
143	0.49118	52.31017	196	0.45054	52.27284
144	0.48989	52.30981	197	0.44938	52.27225
145	0.48873	52.30935	198	0.44841	52.27162
146	0.48753	52.30896	199	0.44743	52.27098
147	0.48629	52.30859	200	0.44646	52.27035
148	0.48510	52.30817	201	0.44549	52.26971
149	0.48389	52.30777	202	0.44451	52.26908
150	0.48259	52.30733	203	0.44354	52.26844
151	0.48141	52.30682	204	0.44256	52.26780
152	0.48039	52.30629	205	0.44159	52.26717
153	0.47944	52.30571	206	0.44061	52.26653

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
154	0.47867	52.30507	207	0.43964	52.26590
155	0.47774	52.30416	208	0.43866	52.26526
156	0.47709	52.30326	209	0.43769	52.26463
157	0.47667	52.30245	210	0.43671	52.26399
158	0.47645	52.30155	211	0.43574	52.26336
159	0.47631	52.30049	212	0.43476	52.26272
160	0.47639	52.29961	213	0.43375	52.26214
161	0.47648	52.29878	214	0.43273	52.26151
162	0.47646	52.29784	215	0.43190	52.26097
163	0.47633	52.29697	216	0.43090	52.26033
164	0.47601	52.29609	217	0.42976	52.25967

Road Receptor Data - A14

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
1	0.41319	52.26878	28	0.45140	52.27338
2	0.41459	52.26865	29	0.45285	52.27374
3	0.41568	52.26846	30	0.45391	52.27399
4	0.41686	52.26824	31	0.45534	52.27431
5	0.41816	52.26798	32	0.45682	52.27460
6	0.41941	52.26769	33	0.45818	52.27487
7	0.42078	52.26744	34	0.45967	52.27511
8	0.42229	52.26722	35	0.46094	52.27534
9	0.42390	52.26708	36	0.46242	52.27560
10	0.42593	52.26702	37	0.46395	52.27577

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
11	0.42794	52.26699	38	0.46569	52.27598
12	0.42970	52.26719	39	0.46713	52.27611
13	0.43177	52.26736	40	0.46865	52.27629
14	0.43366	52.26772	41	0.47017	52.27641
15	0.43548	52.26815	42	0.47214	52.27655
16	0.43699	52.26862	43	0.47358	52.27656
17	0.43836	52.26905	44	0.47493	52.27665
18	0.43946	52.26945	45	0.47630	52.27673
19	0.44061	52.26993	46	0.47767	52.27676
20	0.44186	52.27041	47	0.47932	52.27674
21	0.44290	52.27077	48	0.48062	52.27672
22	0.44414	52.27123	49	0.48232	52.27670
23	0.44521	52.27164	50	0.48375	52.27666
24	0.44625	52.27201	51	0.48515	52.27657
25	0.44756	52.27234	52	0.48657	52.27649
26	0.44886	52.27269	53	0.48820	52.27640
27	0.45032	52.27310	54	0.48938	52.27623

Road Receptor Data - A142

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
55	0.39340	52.28455	65	0.39029	52.29303
56	0.39339	52.28540	66	0.38982	52.29384
57	0.39331	52.28620	67	0.38941	52.29467
58	0.39310	52.28708	68	0.38908	52.29551

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
59	0.39279	52.28797	69	0.38876	52.29636
60	0.39239	52.28883	70	0.38844	52.29720
61	0.39189	52.28970	72	0.38787	52.29493
62	0.39150	52.29050	73	0.38654	52.29500
63	0.39109	52.29140	74	0.38522	52.29513
64	0.39070	52.29218	75	0.38392	52.29533

Road Receptor Data - B1085

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
76	0.48692	52.28471	95	0.45993	52.29091
77	0.48639	52.28515	96	0.45854	52.29117
78	0.48575	52.28566	97	0.45723	52.29138
79	0.48499	52.28607	98	0.45595	52.29168
80	0.48369	52.28633	99	0.45449	52.29218
81	0.48231	52.28648	100	0.45305	52.29270
82	0.48096	52.28663	101	0.45183	52.29317
83	0.47985	52.28670	102	0.45030	52.29336
84	0.47868	52.28671	103	0.44942	52.29410
85	0.47724	52.28672	104	0.44857	52.29472
86	0.47493	52.28697	105	0.44762	52.29540
87	0.47252	52.28766	106	0.44666	52.29594
88	0.47118	52.28871	107	0.44564	52.29685
89	0.46956	52.28921	108	0.44495	52.29748
90	0.46796	52.28965	109	0.44432	52.29811

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
91	0.46639	52.28998	110	0.44357	52.29875
92	0.46473	52.29018	111	0.44298	52.29939
93	0.46317	52.29045	112	0.44214	52.30003
94	0.46170	52.29067			

Road Receptor Data - A11

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
113	0.52089	52.32915	166	0.47514	52.29439
114	0.51993	52.32863	167	0.47462	52.29360
115	0.51888	52.32821	168	0.47384	52.29285
116	0.51765	52.32772	169	0.47307	52.29210
117	0.51640	52.32734	170	0.47229	52.29135
118	0.51492	52.32692	171	0.47152	52.29060
119	0.51369	52.32649	172	0.47090	52.28981
120	0.51217	52.32582	173	0.47010	52.28907
121	0.51090	52.32511	174	0.46938	52.28830
122	0.50977	52.32435	175	0.46874	52.28767
123	0.50883	52.32358	176	0.46779	52.28676
124	0.50817	52.32287	177	0.46712	52.28602
125	0.50745	52.32185	178	0.46638	52.28527
126	0.50693	52.32101	179	0.46560	52.28449
127	0.50633	52.32022	180	0.46486	52.28375
128	0.50570	52.31947	181	0.46410	52.28301
129	0.50490	52.31876	182	0.46330	52.28224

PAGERPOWER	
Urban & Renewables	

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
130	0.50403	52.31801	183	0.46253	52.28150
131	0.50319	52.31733	184	0.46183	52.28079
132	0.50232	52.31660	185	0.46098	52.28005
133	0.50147	52.31597	186	0.46003	52.27934
134	0.50060	52.31531	187	0.45913	52.27861
135	0.49972	52.31458	188	0.45816	52.27797
136	0.49879	52.31386	189	0.45718	52.27734
137	0.49783	52.31320	190	0.45621	52.27670
138	0.49686	52.31253	191	0.45523	52.27607
139	0.49599	52.31198	192	0.45426	52.27543
140	0.49476	52.31150	193	0.45328	52.27480
141	0.49360	52.31102	194	0.45231	52.27416
142	0.49240	52.31062	195	0.45133	52.27352
143	0.49118	52.31017	196	0.45054	52.27284
144	0.48989	52.30981	197	0.44938	52.27225
145	0.48873	52.30935	198	0.44841	52.27162
146	0.48753	52.30896	199	0.44743	52.27098
147	0.48629	52.30859	200	0.44646	52.27035
148	0.48510	52.30817	201	0.44549	52.26971
149	0.48389	52.30777	202	0.44451	52.26908
150	0.48259	52.30733	203	0.44354	52.26844
151	0.48141	52.30682	204	0.44256	52.26780
152	0.48039	52.30629	205	0.44159	52.26717

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
153	0.47944	52.30571	206	0.44061	52.26653
154	0.47867	52.30507	207	0.43964	52.26590
155	0.47774	52.30416	208	0.43866	52.26526
156	0.47709	52.30326	209	0.43769	52.26463
157	0.47667	52.30245	210	0.43671	52.26399
158	0.47645	52.30155	211	0.43574	52.26336
159	0.47631	52.30049	212	0.43476	52.26272
160	0.47639	52.29961	213	0.43375	52.26214
161	0.47648	52.29878	214	0.43273	52.26151
162	0.47646	52.29784	215	0.43190	52.26097
163	0.47633	52.29697	216	0.43090	52.26033
164	0.47601	52.29609	217	0.42976	52.25967
165	0.47570	52.29522			

Road Receptor Data - B1102

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
218	0.49073	52.33596	238	0.46680	52.32844
219	0.48970	52.33562	239	0.46564	52.32795
220	0.48866	52.33529	240	0.46448	52.32746
221	0.48763	52.33495	241	0.46323	52.32708
222	0.48624	52.33482	242	0.46199	52.32671
223	0.48485	52.33469	243	0.46074	52.32634
224	0.48347	52.33456	244	0.45950	52.32596
225	220	52.33444	245	0.45825	52.32559

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
226	0.48070	52.33431	246	0.45701	52.32522
227	0.47954	52.33382	247	0.45576	52.32484
228	0.47838	52.33333	248	0.45452	52.32447
229	0.47722	52.33284	249	0.45327	52.32410
230	0.47606	52.33235	250	0.45202	52.32372
231	0.47490	52.33186	251	0.45078	52.32335
232	0.47375	52.33137	252	0.44953	52.32298
233	0.47259	52.33088	253	0.44829	52.32260
234	0.47143	52.33039	254	0.44704	52.32223
235	0.47027	52.32990	255	0.44580	52.32186
236	0.46911	52.32941	256	0.44455	52.32148
237	0.46795	52.32893	257	0.44407	52.32089

Public Right of Way Receptor Data

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
1	0.42861	52.25909	126	0.44860	52.31925
2	0.42921	52.25956	127	0.48924	52.33413
3	0.42944	52.26042	128	0.48907	52.33378
4	0.42967	52.26127	129	0.48811	52.33350
5	0.42990	52.26212	130	0.48801	52.33318
6	0.43013	52.26297	131	0.48715	52.33249
7	0.43037	52.26383	132	0.48630	52.33180
8	0.43060	52.26468	133	0.48544	52.33111
9	0.43083	52.26553	134	0.48458	52.33042

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
10	0.43106	52.26638	135	0.48373	52.32973
11	0.43129	52.26724	136	0.48287	52.32904
12	0.43152	52.26809	137	0.48202	52.32835
13	0.43058	52.26876	138	0.48116	52.32766
14	0.42964	52.26943	139	0.48031	52.32697
15	0.42870	52.27011	140	0.47945	52.32628
16	0.42777	52.27078	141	0.47859	52.32559
17	0.42683	52.27145	142	0.47774	52.32490
18	0.42589	52.27213	143	0.47688	52.32421
19	0.42495	52.27280	144	0.47603	52.32352
20	0.42401	52.27347	145	0.47517	52.32283
21	0.42308	52.27414	146	0.47432	52.32214
22	0.42214	52.27482	147	0.47346	52.32145
23	0.42120	52.27549	148	0.47260	52.32076
24	0.42026	52.27616	149	0.47175	52.32007
25	0.41932	52.27684	150	0.47089	52.31938
26	0.41839	52.27751	151	0.47004	52.31869
27	0.41745	52.27818	152	0.46918	52.31800
28	0.41651	52.27885	153	0.46800	52.31791
29	0.41557	52.27953	154	0.46683	52.31781
30	0.41463	52.28020	155	0.46565	52.31772
31	0.41370	52.28087	156	0.46447	52.31762
32	0.41276	52.28155	157	0.46371	52.31778

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
33	0.40663	52.28458	158	0.46295	52.31795
34	0.40767	52.28489	159	0.46160	52.31811
35	0.40871	52.28521	160	0.46026	52.31827
36	0.40962	52.28585	161	0.45892	52.31844
37	0.41054	52.28649	162	0.45758	52.31860
38	0.41145	52.28713	163	0.45624	52.31877
39	0.41237	52.28777	164	0.45601	52.31957
40	0.41329	52.28841	165	0.45579	52.32037
41	0.41420	52.28905	166	0.45556	52.32117
42	0.41512	52.28970	167	0.45533	52.32197
43	0.41604	52.29034	168	0.45511	52.32277
44	0.41695	52.29098	169	0.45488	52.32357
45	0.41787	52.29162	170	0.45466	52.32437
46	0.41879	52.29226	171	0.44121	52.32336
47	0.41970	52.29290	172	0.44125	52.32413
48	0.42062	52.29354	173	0.44096	52.32496
49	0.42153	52.29419	174	0.44067	52.32579
50	0.42245	52.29483	175	0.44039	52.32662
51	0.42337	52.29547	176	0.44010	52.32745
52	0.42428	52.29611	177	0.43981	52.32829
53	0.42679	52.29144	178	0.43952	52.32912
54	0.42594	52.29206	179	0.43891	52.32992
55	0.42509	52.29269	180	0.43829	52.33073

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
56	0.42424	52.29332	181	0.43767	52.33153
57	0.42339	52.29395	182	0.43705	52.33234
58	0.42255	52.29457	183	0.43603	52.33268
59	0.42187	52.29475	184	0.43500	52.33303
60	0.42089	52.29532	185	0.43398	52.33338
61	0.41991	52.29588	186	0.43284	52.33392
62	0.41910	52.29650	187	0.43170	52.33446
63	0.41829	52.29713	188	0.43056	52.33499
64	0.41747	52.29776	189	0.42942	52.33553
65	0.41666	52.29838	190	0.42829	52.33607
66	0.41585	52.29901	191	0.42715	52.33661
67	0.41504	52.29963	192	0.42601	52.33715
68	0.41423	52.30026	193	0.42487	52.33768
69	0.48121	52.29880	194	0.42484	52.33839
70	0.48090	52.29936	195	0.42481	52.33909
71	0.48059	52.29992	196	0.42611	52.33944
72	0.47973	52.30040	197	0.42740	52.33979
73	0.47888	52.30088	198	0.42870	52.34014
74	0.47802	52.30136	199	0.43000	52.34049
75	0.47717	52.30184	200	0.43130	52.34084
76	0.47683	52.30220	201	0.43260	52.34119
77	0.47605	52.30260	202	0.46481	52.34556
78	0.47541	52.30246	203	0.46386	52.34535

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
79	0.47450	52.30283	204	0.46286	52.34550
80	0.47359	52.30320	205	0.46186	52.34565
81	0.47281	52.30258	206	0.46086	52.34580
82	0.47203	52.30196	207	0.45954	52.34581
83	0.47124	52.30135	208	0.45911	52.34574
84	0.47046	52.30073	209	0.45880	52.34555
85	0.46968	52.30011	210	0.45856	52.34506
86	0.46889	52.29949	211	0.45828	52.34490
87	0.46805	52.30022	212	0.45784	52.34490
88	0.46720	52.30094	213	0.45695	52.34517
89	0.46611	52.30097	214	0.45661	52.34515
90	0.46502	52.30101	215	0.45585	52.34485
91	0.47558	52.30663	216	0.45528	52.34484
92	0.47437	52.30709	217	0.45401	52.34504
93	0.47315	52.30755	218	0.45275	52.34524
94	0.47194	52.30801	219	0.45223	52.34555
95	0.47072	52.30847	220	0.45180	52.34641
96	0.46951	52.30893	221	0.45137	52.34726
97	0.46829	52.30939	222	0.45095	52.34753
98	0.46708	52.30985	223	0.45017	52.34746
99	0.46587	52.31031	224	0.44939	52.34739
100	0.46465	52.31077	225	0.44887	52.34777
101	0.46344	52.31123	226	0.44836	52.34814

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
102	0.46222	52.31169	227	0.44783	52.34826
103	0.46136	52.31102	228	0.44770	52.34892
104	0.46046	52.31169	229	0.44757	52.34959
105	0.46041	52.31257	230	0.44744	52.35025
106	0.45976	52.31291	231	0.44598	52.35019
107	0.45937	52.31359	232	0.44598	52.34989
108	0.45898	52.31426	233	0.44561	52.34980
109	0.45907	52.31486	234	0.44563	52.34941
110	0.45916	52.31546	235	0.44493	52.34934
111	0.45797	52.31599	236	0.44411	52.34900
112	0.45678	52.31652	237	0.44328	52.34866
113	0.45545	52.31651	238	0.44207	52.34887
114	0.45411	52.31650	239	0.44085	52.34908
115	0.45329	52.31686	240	0.43987	52.34955
116	0.45247	52.31722	241	0.43889	52.35003
117	0.45173	52.31694	242	0.43809	52.35031
118	0.45099	52.31665	243	0.43729	52.35059
119	0.45001	52.31673	244	0.43668	52.35112
120	0.44904	52.31681	245	0.43608	52.35164
121	0.44807	52.31688	246	0.43548	52.35217
122	0.44725	52.31741	247	0.43419	52.35218
123	0.44733	52.31805	248	0.43290	52.35220
124	0.44742	52.31869	249	0.43175	52.35260

PAGERPOWER () Urban & Renewables

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
125	0.44750	52.31933		·	
Dwelling Rec	eptor Data		-		
Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
1	0.42871	52.25936	113	0.43922	52.32183
2	0.40959	52.27456	114	0.44015	52.32173
3	0.40534	52.27723	115	0.44032	52.32199
4	0.40597	52.27763	116	0.44007	52.32230
5	0.40659	52.27803	117	0.44071	52.32226
6	0.40764	52.27803	118	0.44071	52.32259
7	0.40753	52.27861	119	0.44150	52.32261
8	0.41001	52.27958	120	0.44071	52.32294
9	0.41129	52.27992	121	0.44522	52.31897
10	0.41121	52.28035	122	0.44852	52.31938
11	0.41023	52.28084	123	0.44755	52.32004
12	0.41108	52.28113	124	0.44650	52.32018
13	0.41180	52.28135	125	0.44552	52.32029
14	0.40945	52.28106	126	0.44803	52.32159
15	0.40860	52.28156	127	0.44890	52.32178
16	0.40806	52.28192	128	0.45031	52.32246
17	0.40736	52.28272	129	0.44424	52.32185
18	0.40683	52.28335	130	0.44438	52.32246
19	0.40723	52.28373	131	0.44562	52.32255
20	0.48762	52.28432	132	0.44679	52.32254

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
21	0.48707	52.28482	133	0.44488	52.32310
22	0.48642	52.28547	134	0.44803	52.32308
23	0.42680	52.29188	135	0.44808	52.32344
24	0.42433	52.29355	136	0.44957	52.32341
25	0.39156	52.29395	137	0.45042	52.32354
26	0.47924	52.30288	138	0.44798	52.32381
27	0.48098	52.30344	139	0.44930	52.32388
28	0.47957	52.30382	140	0.44796	52.32419
29	0.48045	52.30379	141	0.44926	52.32447
30	0.47993	52.30411	142	0.48765	52.33077
31	0.47967	52.30437	143	0.48659	52.33126
32	0.47906	52.30473	144	0.48777	52.33159
33	0.47706	52.30601	145	0.47044	52.32963
34	0.47937	52.30705	146	0.47159	52.33002
35	0.48097	52.30876	147	0.47243	52.33062
36	0.47978	52.30896	148	0.47310	52.33099
37	0.48405	52.30272	149	0.47384	52.33180
38	0.48406	52.30355	150	0.47770	52.33210
39	0.48539	52.30366	151	0.47729	52.33249
40	0.48519	52.30468	152	0.47716	52.33288
41	0.48550	52.30497	153	0.47691	52.33313
42	0.48533	52.30539	154	0.47646	52.33327
43	0.48482	52.30567	155	0.47699	52.33360

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
44	0.48414	52.30591	156	0.47720	52.33394
45	0.48378	52.30611	157	0.47744	52.33422
46	0.48330	52.30628	158	0.47761	52.33444
47	0.48316	52.30656	159	0.47797	52.33474
48	0.48368	52.30680	160	0.47870	52.33466
49	0.48421	52.30698	161	0.47927	52.33481
50	0.48458	52.30718	162	0.47945	52.33507
51	0.48500	52.30698	163	0.47977	52.33538
52	0.48544	52.30678	164	0.47993	52.33571
53	0.48599	52.30657	165	0.48002	52.33611
54	0.48663	52.30666	166	0.48030	52.33637
55	0.48693	52.30688	167	0.48068	52.33655
56	0.48680	52.30711	168	0.48088	52.33746
57	0.48646	52.30728	169	0.48120	52.33779
58	0.48618	52.30751	170	0.48190	52.33787
59	0.48653	52.30769	171	0.48249	52.33789
60	0.48679	52.30784	172	0.48225	52.33830
61	0.48733	52.30782	173	0.44073	52.33715
62	0.48774	52.30788	174	0.41551	52.33314
63	0.48798	52.30807	175	0.41514	52.33369
64	0.48824	52.30826	176	0.41486	52.33421
65	0.48885	52.30830	177	0.41453	52.33482
66	0.48942	52.30819	178	0.41450	52.33573

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
67	0.48960	52.30836	179	0.41418	52.33618
68	0.49035	52.30816	180	0.41377	52.33671
69	0.49079	52.30802	181	0.41306	52.33696
70	0.49143	52.30763	182	0.41299	52.33727
71	0.49213	52.30780	183	0.41394	52.33804
72	0.49224	52.30812	184	0.41379	52.33845
73	0.49262	52.30841	185	0.41360	52.33885
74	0.49267	52.30873	186	0.41316	52.33935
75	0.49310	52.30909	187	0.41360	52.33969
76	0.49377	52.30909	188	0.41470	52.33978
77	0.49416	52.30940	189	0.41554	52.33993
78	0.49482	52.30912	190	0.41592	52.34026
79	0.49626	52.30872	191	0.41676	52.34034
80	0.49639	52.30935	192	0.41630	52.34051
81	0.49656	52.30958	193	0.41649	52.34078
82	0.49650	52.30988	194	0.41619	52.34092
83	0.49646	52.31013	195	0.41671	52.34138
84	0.49690	52.31010	196	0.41744	52.34134
85	0.49757	52.31011	197	0.41719	52.34193
86	0.49849	52.31014	198	0.41813	52.34233
87	0.49909	52.31017	199	0.41909	52.34247
88	0.49968	52.31017	200	0.41903	52.34289
89	0.50018	52.31013	201	0.41831	52.34344

PAGERPOWER	
Urban & Renewables	

Dwelling	Longitude (°)	Latitude (°)	Dwelling	Longitude (°)	Latitude (°)
90	0.50097	52.31019	202	0.41905	52.34360
91	0.50154	52.31023	203	0.41980	52.34363
92	0.50194	52.31025	204	0.42048	52.34355
93	0.45944	52.30775	205	0.42138	52.34353
94	0.45912	52.30847	206	0.42192	52.34361
95	0.45784	52.30839	207	0.42286	52.34352
96	0.45633	52.30836	208	0.42220	52.34392
97	0.45929	52.30929	209	0.42199	52.34438
98	0.45833	52.30954	210	0.42141	52.34474
99	0.45864	52.31054	211	0.42105	52.34507
100	0.46066	52.30994	212	0.42179	52.34537
101	0.46221	52.31059	213	0.42230	52.34555
102	0.46241	52.31149	214	0.42302	52.34582
103	0.43883	52.31292	215	0.42389	52.34630
104	0.43794	52.31677	216	0.46027	52.34665
105	0.43578	52.32077	217	0.46047	52.34693
106	0.43626	52.32087	218	0.46008	52.34731
107	0.43584	52.32127	219	0.46061	52.34753
108	0.43674	52.32111	220	0.46106	52.34780
109	0.43721	52.32122	221	0.46154	52.34807
110	0.43669	52.32154	222	0.46195	52.34826
111	0.43719	52.32200	223	0.46117	52.28392
112	0.43766	52.32183	224	0.47489	52.28475

Horse Facilities Data

Name	Longitude (°)	Latitude (°)	
Snailwell Gallops	0.41823	52.27185	
British Racing School	0.41418	52.26730	
Limekins Gallops	0.42805	52.25762	
Godolphin Stables	0.41200	52.25600	
Bury Hill Gallops	0.43402	52.25540	
Long Hill Gallops	0.41407	52.24681	

APPENDIX I - SOLAR PANEL MODEL DETAILS

Panel Boundary Data - Area A

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.423082	52.334226	06	0.438862	52.329221
02	0.428651	52.335095	07	0.42789	52.325578
03	0.434436	52.332677	08	0.424603	52.329145
04	0.435976	52.331053	09	0.427061	52.329984
05	0.437748	52.330725			

Panel Boundary Data - Area B

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.442817	52.346822	11	0.437728	52.33387
02	0.449937	52.345721	12	0.434963	52.333579
03	0.450459	52.339237	13	0.426621	52.337507
04	0.447473	52.339232	14	0.427152	52.33949
05	0.447401	52.339694	15	0.432688	52.341109
06	0.442634	52.339508	16	0.433681	52.341217
07	0.442626	52.33857	17	0.436422	52.340848
08	0.436167	52.338348	18	0.436846	52.340379
09	0.435326	52.335062	19	0.438817	52.340369
10	0.437591	52.334849	20	0.440747	52.34186

Panel Boundary Data - Area C

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.442643	52.33318	04	0.445027	52.337704
02	0.442111	52.336957	05	0.450679	52.336945
03	0.445179	52.336378	06	0.451544	52.333906

Panel Boundary Data - Area D

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.473523	52.330344	18	0.474306	52.315965
02	0.477198	52.330577	19	0.480537	52.313731
03	0.478014	52.330463	20	0.478538	52.311833
04	0.478455	52.329157	21	0.480171	52.311381
05	0.480813	52.329151	22	0.475292	52.306807
06	0.480747	52.328592	23	0.46615	52.310377
07	0.480966	52.328179	24	0.470918	52.315086
08	0.480544	52.327639	25	0.467407	52.316393
09	0.478772	52.327482	26	0.473957	52.321704
10	0.478863	52.326022	27	0.473009	52.321644
11	0.47802	52.32527	28	0.471786	52.322977
12	0.479617	52.324436	29	0.467035	52.322655
13	0.479681	52.320893	30	0.466467	52.324749
14	0.47662	52.319694	31	0.470126	52.325075
15	0.480765	52.317582	32	0.46949	52.328422
16	0.480332	52.317128	33	0.473132	52.328626
17	0.480294	52.316049	34	0.473134	52.329824

Panel Boundary Data - Area E

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.484419	52.328267	10	0.500586	52.323839
02	0.486607	52.328515	11	0.499207	52.323417
03	0.488277	52.328139	12	0.498569	52.322039
04	0.49157	52.328972	13	0.49707	52.321888
05	0.49736	52.329143	14	0.497183	52.324375
06	0.507524	52.327547	15	0.489495	52.324298
07	0.509963	52.326595	16	0.489715	52.32258
08	0.508516	52.325055	17	0.487752	52.322308
09	0.507012	52.322401	18	0.486677	52.325387

Panel Boundary Data - Area F

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.452214	52.292454	08	0.463727	52.284448
02	0.456074	52.291128	09	0.463269	52.283916
03	0.463999	52.289715	10	0.459493	52.287168
04	0.465935	52.289674	11	0.458387	52.287466
05	0.468	52.288971	12	0.457294	52.287006
06	0.467531	52.287647	13	0.451893	52.290121
07	0.465463	52.284978			

Panel Boundary Data - Area G

Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.470129	52.287666	13	0.474726	52.280981
02	0.470895	52.28691	14	0.473604	52.280726
03	0.471118	52.285843	15	0.473951	52.280064
04	0.470652	52.284389	16	0.474884	52.280167
05	0.469859	52.283433	17	0.464376	52.276219
06	0.468461	52.282793	18	0.461462	52.278671
07	0.468962	52.281136	19	0.461635	52.279661
08	0.470677	52.280466	20	0.464448	52.282541
09	0.472127	52.280787	21	0.466434	52.282459
10	0.469685	52.281969	22	0.465839	52.283741
11	0.470871	52.283803	23	0.469131	52.287031
12	0.474915	52.283543			

Panel Boundary Data - Area H

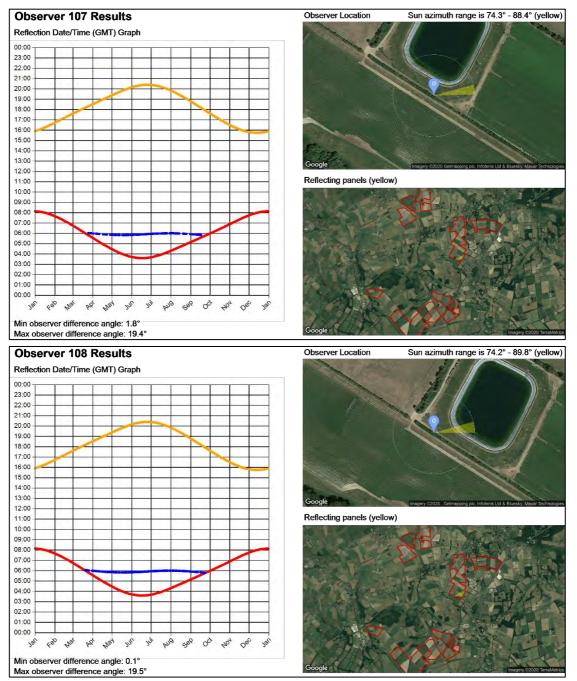
Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.423657	52.283113	17	0.448334	52.277296
02	0.433263	52.276261	18	0.451574	52.279429
03	0.434466	52.27646	19	0.448767	52.281587
04	0.435289	52.277018	20	0.443378	52.278054
05	0.434585	52.277567	21	0.444034	52.276849
06	0.440604	52.281385	22	0.44549	52.276201
07	0.438928	52.282499	23	0.447291	52.276251
08	0.440248	52.283309	24	0.449837	52.27409

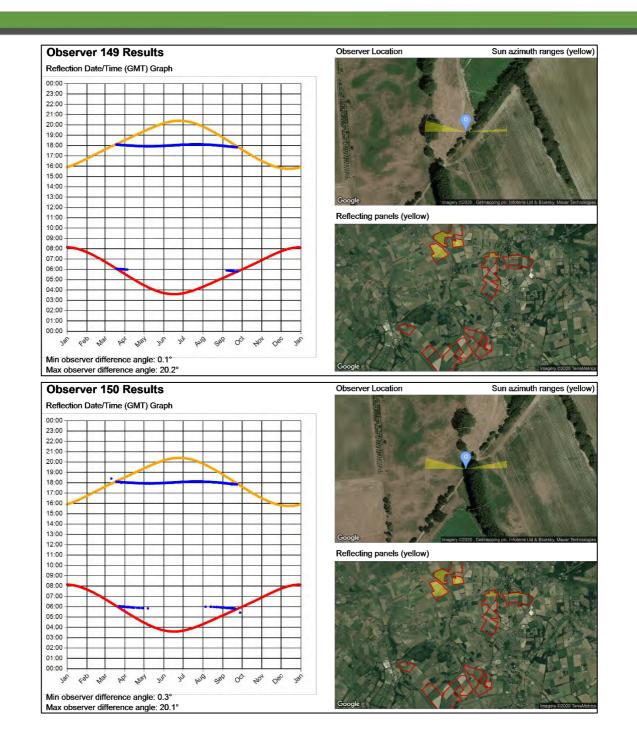
09	0.443044	52.282646	25	0.447099	52.274059
10	0.449076	52.286594	26	0.445446	52.273696
11	0.45251	52.286918	27	0.444639	52.27303
12	0.453833	52.28564	28	0.44444	52.27186
13	0.454218	52.284785	29	0.43537	52.268629
14	0.459311	52.279697	30	0.431836	52.268144
15	0.454829	52.276517	31	0.416665	52.279203
16	0.449386	52.276456			

Panel Boundary Data - Area I

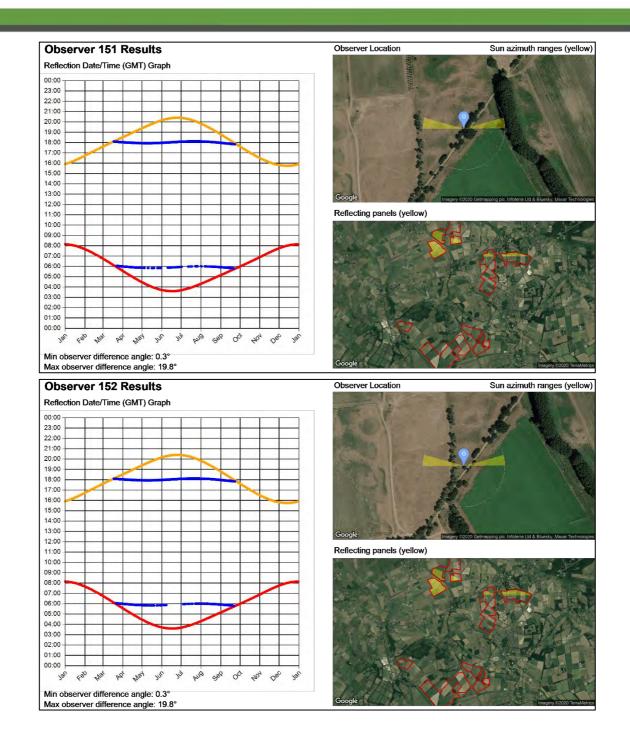
Location	Longitude (°)	Latitude (°)	Location	Longitude (°)	Latitude (°)
01	0.410813	52.291849	08	0.398697	52.293532
02	0.406343	52.288298	09	0.402337	52.293873
03	0.404797	52.288894	10	0.403004	52.293701
04	0.401536	52.289057	11	0.405067	52.292202
05	0.39806	52.290844	12	0.406013	52.29291
06	0.397388	52.292323	13	0.407479	52.293177
07	0.397834	52.293094	14	0.408908	52.292872

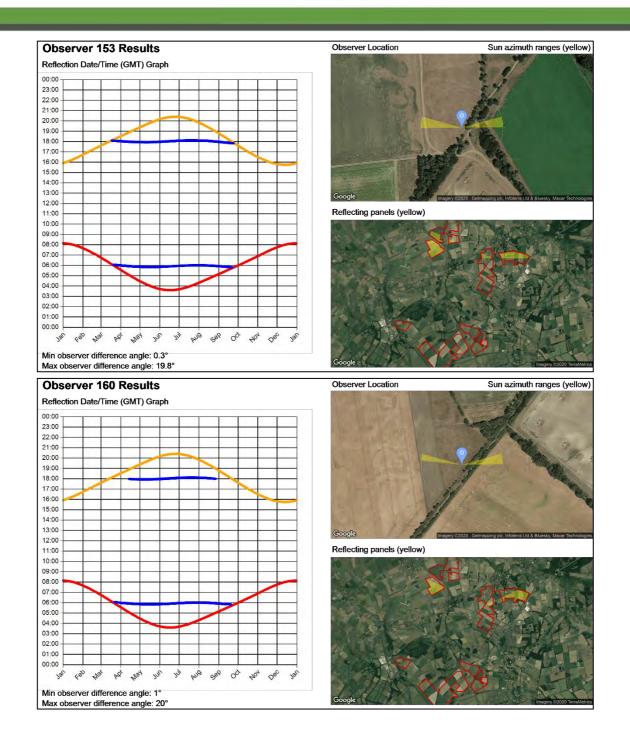
APPENDIX J – DETAILLED MODELLING RESULTS

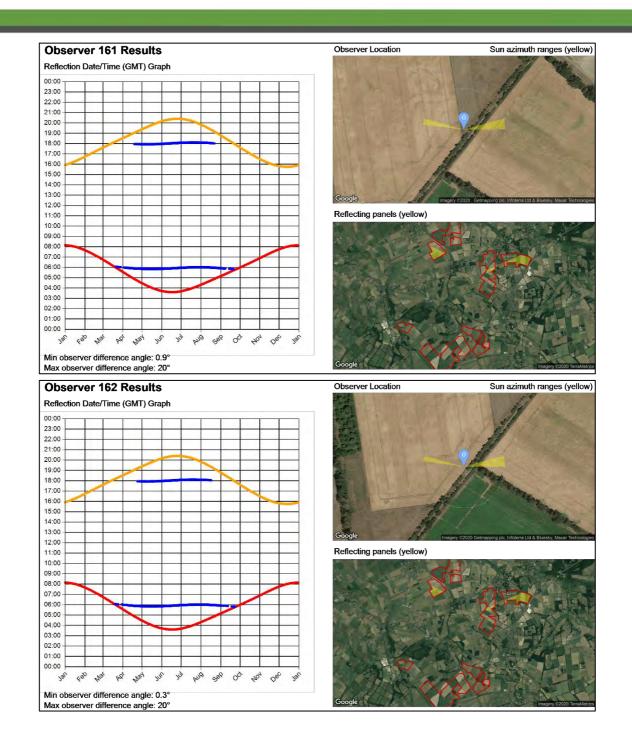

Overview


The charts for the potentially affected receptors are shown on the following pages. Each chart shows:

- The receptor (observer) location top right image. This also shows the azimuth range of the Sun itself at times when reflections are possible. If sunlight is experienced from the same direction as the reflecting panels, the overall impact of the reflection is reduced as discussed within the body of the report;
- The reflecting panels bottom right image. The reflecting area is shown in yellow. If the yellow panels are not visible from the observer location, no issues will occur in practice. Additional obstructions which may obscure the panels from view are considered separately within the analysis;
- The reflection date/time graph left hand side of the page. The blue line indicates the dates and times at which geometric reflections are possible. This relates to reflections from the yellow areas.
- The sunrise and sunset curves throughout the year (red and yellow lines).




Public Right of Way and Bridleway Receptors



Pager Power Limited Stour Valley Business Centre Sudbury Suffolk CO10 7GB

Tel: +44 1787 319001 Email: info@pagerpower.com Web: www.pagerpower.com